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Executive summary

The PreseMT Corpus Modelling Module is an off-line module. It takes as input an annotated
text corpus in the target language. From this, it infers a corpus model, which is an abstraction
of certain aspects of the text corpus. Since the text corpus is a sample from the target language,
a corpus model is also a language model, which is a more conventional term. The task of the
Corpus Modelling Module is to support the Translation Equivalent Selection Module in the
translation of individual phrases, which primarily involves word translation and word ordering.

Evaluation of such language models is unfeasible without a full implementation of the Pre-
seMT translation system and accompanying translation evaluation procedures. Instead, initial
work has focussed on one particular aspect of the translation process for which it is easier to
evaluate the contribution of different language models. This is the task of Word Translation
Disambiguation (WTD), which amounts to selecting the best translation(s) given a source
word instance in its context (e.g., a sentence) and a set of target word candidates (e.g., from
a bilingual dictionary). One of the advantages of this is that we can reuse the framework from
the word translation tasks for several language pairs in SemEval 2010. The work experimental
evaluations described in the present deliverable concern the English-to-German part of the
SemEval Cross-Lingual Word Sense Disambiguation.

One of the features that distinguishes the PreseMT approach to MT from mainstream statis-
tical MT is that it tries to avoid relying on large parallel text corpora for training purposes, a
resource that is both scarce and expensive. Instead, it aims at learning patterns in the source
and target language, and the mapping between them — from very large annotated monolingual
corpora only.

The work on translation disambiguation without parallel text has proceeded along three lines.
The initial approach relies on Vector Space Models and is based on the assumption that the
meaning of a word can be inferred from its usage, i.e., its distribution in text. What makes
this approach particularly attractive in the context of PreseMT is that it does not require
any external knowledge resources besides a large text corpus and that it is fully unsupervised
(i.e., no need for human annotation).

The second approach aims at a straight-forward practical solution based on statistical n-gram
models, which are currently the de facto language models in NLP, including (statistical) MT.
Statistical n-gram models allow for a “generation and ranking” approach to translation which
consists of generating alternative word translations and word orders, and subsequently ranking
these alternatives according to their perplexity in order to find the best translation. Even
though n-gram models is an established technology, constructing such models on the basis of
text corpora containing billions of words poses interesting challenges in the area of paralleliza-
tion and high-performance computing.

Thirdly and most recently, we have investigated the use of the use of Kohonen’s Self-Organising
Map (SOM) model in order to model the TL language. Self-Organising Maps is an unsupervised
classification strategy which aims to convert a high-dimensional input space of training samples
into a low-dimensional representation. SOMs are employed to determine the semantic relevance
of a translation candidate with respect to its context, and thus allow a quantitative comparison
among all the available alternatives that are suggested as candidate translations by a bilingual

PreseMT — Deliverable 3.3.2 — NTNU — Version 0.7 — January 18, 2012



iv

dictionary. One additional advantage of the SOM approach is that the models are small in
terms of memory and can thus be processed very quickly and efficiently.

The work package has delivered a number of concrete results. Firstly, new methods for effi-
ciently constructing statistical n-gram models from very large corpora (billions of words) have
been developed using parallel processing techniques. The use of n-gram models for translation
disambiguation has been experimentally evaluated. Secondly, innovative approaches to transla-
tion disambiguation without relying on parallel text corpora — based on Vector Space Models
and Self-Organising Maps — have been proposed, developed, evaluated and reported. So far,
the VSM approach has also been described in a scientific publication (more publications on
all approaches are expected). Thirdly, both the VSM-based and SOM-based disambiguation
approaches have been implemented in the PreseMT MT system. Their contribution to the
overall translation quality is currently assessed.

Version history

This document relates to the second version of the Corpus Modelling Module. The first version
of the module was reported on in Deliverable D3.3.1: “Corpus Modelling Module (ver. 1)”
created at Month 12 of the project. Clearly, there is a reasonable amount of overlap between
the two versions of the module, and even more so between the two versions of the textual
deliverable. The following section summarises the main changes undertaken when creating the
present text, for each chapter of the deliverable:

1 Introduction: Rewritten according to the many changes in the rest of the document.

2 Related work: No major changes.

3 The SemEval word translation tasks: Merges parts of Chapter 3 and Chapter 4 of the
earlier deliverable, adding new text on the evaluation measures used.

4 Vector Space Modelling: Contains many minor changes and updates, and reports new
experimental results.

5 Statistical N-gram Modelling: Changes mainly in introduction. Addition of a final sec-
tion with experimental results on WTD.

6 Modelling with Self-Organising Maps: Completely new chapter.

7 VSM-based disambiguation in the PreseMT MT system: Completely new chapter.

8 Discussion and future work: Rewritten according to the changes in the rest of the doc-
ument.
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Chapter 1

Introduction

1.1 The Corpus Modelling Module

The on-line PreseMT translation system comprises three major steps. First source language
text is linguistically annotated, which includes the usual steps of tokenization, lemmatization
and POS tagging, followed by lookup in a bilingual lexicon. Second, the Structure Selection
Module determines the global structure of the translation by reordering phrases towards the
order required in the target language. Third, the Translation Equivalent Selection Module takes
care of the translation of individual phrases, which primarily involves resolving word translation
choices, word ordering and morphological generation. The role of the Corpus Modelling Module
is to support the Translation Equivalent Selection Module in accomplishing its tasks.

The Corpus Modelling Module is an off-line module. It takes as input an annotated text corpus
in the target language. From this it infers a corpus model, which is an abstraction of certain
aspects of the text corpus. For instance, a word n-gram model is an abstraction of the language
limited to the probability of word sequences. Since the text corpus is a sample from the target
language, a corpus model is also a language model (LM), which is a more conventional term.
The goal of modelling can be to focus on a particular aspect of the language (e.g., word order)
and/or to compress/encode relevant information in the text corpus to make access computa-
tionally feasible. In the remainder of this text we will use the terms “corpus model”/“corpus
modelling module” and “language model”/“language modelling module” interchangeably.

Since the PreseMT Corpus Modelling Module delivers language models that can be used
by the Translation Equivalent Selection Module, the design and implementation of the Corpus
Modelling Module depends on the requirements of the Translation Equivalent Selection Module.
However, at the time work on both modules started, this posed some practical problems. As
work on the Translation Equivalent Selection was in progress, it was difficult to explicitly specify
its requirements regarding the language models. At the same time, work on language modelling
in isolation was difficult without an application context like the PreseMT translation system
to serve as a framework for evaluating models. As a solution to these problems, work on
language modelling has proceeded along two lines: a short term and a long term approach.
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The first approach aimed at a short term practical solution based on statistical n-gram models.
It acknowledges that statistical n-gram language models are currently the de facto language
models in NLP, including (Statistical) Machine Translation. They allow for a “generation and
ranking” approach to translation that first generates alternative word translations and word
orders and then ranks these alternatives according to their perplexity in order to find the best
translation. Statistical n-gram models partly addressed the direct needs of the Translation
Equivalent Selection Module, enabling initial implementation work on translation selection
to continue relatively independent from the work on corpus modelling. Even though n-gram
modelling is an established technology, constructing such models on the basis of text corpora
containing billions of words poses interesting engineering challenges in the area of parallelization
and high performance computing. In addition, the n-gram models serve as the state-of-the-art
baseline on which we aimed to improve in the second line of work.

The second approach targets development of new language models according to the PreseMT
“Description of Work” (Annex I to the PreseMT Grant Agreement), in order to measure
semantic similarity between word translations. This addresses the problem that, according
to a bilingual dictionary or some other translation model, a source language word can often
have several translations in the target language. For instance, the English word knight may
be translated as the Dutch word ridder in the context of medieval history, but as paard in the
context of a chess game. We can define this subtask in the translation process as follows:

Word Translation Disambiguation (WTD)
Given a source word instance in its context (e.g., a sentence) and a set of target
word candidates (e.g., from a bilingual dictionary), the task of Word Translation
Disambiguation is to select the best translation(s).

One of the features which distinguishes the PreseMT approach to MT from mainstream
(statistical) MT is that it tries to avoid relying on large parallel text corpora for training
purposes, a resource that is both scarce and expensive. Instead, it aims at learning patterns
in the source and target language, and the mapping between them — from large annotated
monolingual corpora only. In a similar vein, most empirical approaches to WTD crucially
depend on word-aligned parallel text. In contrast, our goal is to develop data-driven methods
for WTD that do not require any parallel text, but rely solely on the combination of bilingual
dictionaries and large-scale monolingual corpora. Even though it may be unrealistic to expect
that such methods would exceed those relying on parallel text in terms of performance, we
ultimately aim to bridge the gap in performance between the two.

So far primarily three different strategies for WTD have been investigated within the PreseMT
project. The first one is to exploit statistical n-gram models of the target language for this
task. The second is to use Vector Space Models (VSM) to measure the similarity between the
context of source word and the contexts of translations candidates in a target language corpus.
The third approach uses Self-Organising Maps (SOM) to measure semantic similarity between
consecutive translation candidates.

As argued earlier, evaluation of language models is unfeasible as long as we lack a full im-
plementation of the PreseMT translation system and accompanying translation evaluation
procedures. Yet, waiting for a fully-functional PreseMT MT system would have been equally
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unfeasible. One of the advantages of working on Word Translation Disambiguation was that
we could reuse the framework from two closely related tasks from SemEval 2010, namely, the
Cross-Lingual Lexical Substitution task (Mihalcea et al., 2010) and the Cross-Lingual Word
Sense Disambiguation task (Lefever and Hoste, 2010b). This provided an experimental frame-
work with test data, an evaluation method, baseline scores, and scores of competitive systems.
The SemEval Cross-Lingual Word Sense Disambiguation task offers data sets for several lan-
guage pairs, namely translation from English to German, Dutch, French, Spanish, and Italian.
The work on WTD described here reuses the English-to-German part of the CL-WSD task as
targeted language pairs in the PreseMT context. (This may be extended in WP9 to include
English-Italian data, as Italian is one of the target languages in the project’s final year.)

In the second year of the project, the focus has gradually shifted towards integrating the
corpus modelling approaches in the PreseMT MT system. This involved implementing the
corpus modelling module and interfacing it with the other modules, primarily the translation
Equivalent Selection module. This required generalizing and scaling up the approaches and
finding ways to make them computationally feasible, for example, by parallelisation.

1.2 Deliverable outline

The rest of the deliverable is structured as follows: the first two chapters give background
and establish the framework in which the experiments were run. Hence Chapter 2 starts out
by discussing related work — in particular different approaches to word translation — and
Chapter 3 then gives an overview of the two SemEval 2010 word translation tasks, the Cross-
Lingual Lexical Substitution task and the Cross-Lingual Word Sense Disambiguation task, that
provide us with an experimental framework.

One of the advantages of reusing the SemEval framework is that it includes an evaluation
method. However, it is not without problems. The evaluation criteria form the topic of
Section 3.3 which proposes some modifications to the SemEval criteria that are needed in the
PreseMT context.

The chapters thereafter go into detail on the three lines of research on language modelling
within Task T3.4 (“Design and implementation of the Corpus modelling module”) of PreseMT
WP3, “Corpus extraction & processing algorithms”. Chapter 4 discusses the use of Vector
Space Models in Word Translation Disambiguation. The chapter reports experimental results
on applying this approach to the English-to-German part of the SemEval Cross-Lingual Word
Sense Disambiguation task. Chapter 5 details how n-gram models have been created from
corpora mined from the web and applied to Word Translation Disambiguation. Similarly,
Chapter 6 describes the creation of Self-Organising Maps for the disambiguation task and
reports some results with this approach.

The corpus modelling module in the PreseMT system incorporates the VSM-based WTD as
one of its appraoches. Chapter 7 details the actual module, both its off-line preprocessing and
its on-line component.

Finally, Chapter 8 concludes the discussion of the present version of the Corpus Modelling
Module and points to some future directions of research that could be pursued.
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Chapter 2

Related work

Koehn and Knight (2001) compare different methods to train word-level translation models for
German-to-English translation of nouns. These methods cover a logical range of conceivable
approaches to data-driven word translation. It is therefore a good starting point to map work
on word translation/disambiguation and to get a notion of the relative scores obtainable by
different approaches.

1. Using parallel corpus and lexicon

A bilingual lexicon is used to extract word-level noun translation pairs from a parallel
corpus. Using context words as features, supervised machine learning techniques (e.g.,
decision lists) can then applied to predict the correct translation of a source word in its
context. This method gave the best scores in Koehn and Knight’s (2001) experiments.

2. Using parallel and monolingual corpora and lexicon

This method uses Yarowsky’s (1995) bootstrapping algorithm in combination with a
German monolingual corpus to bootstrap training. However, bootstrapping did not lead
to any performance improvement.

3. Using only parallel corpus

This applies the standard SMT as a noisy channel approach, using GIZA for word align-
ment, but without word alignments being restricted by a lexicon. Performance dropped
significantly, especially for less frequent words.

4. Using monolingual corpora and lexicon

The first approach here is to simply always choose the translation candidate which occurs
most frequently in the target language corpus. The second approach is to build a language
model and use it to pick the most probable word sequence in the target language. The
third approach relies on monolingual source and target language corpora in combination
with the Expectation Maximization algorithm to learn word translation probabilities.
Performance of the latter two is comparable to that of using only a parallel corpus.

5. Using only monolingual corpora
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6 Chapter 2.

Table 2.1: Accuracy for various word translation methods as given by Koehn and Knight (2001)

Knowledge source: Method: Accuracy (%):

Parallel corpus + lexicon most frequent 88.9
Parallel corpus + lexicon decision list 89.5
Parallel corpus Giza 76.9
Monolingual corpus + lexicon most frequent 75.3
Monolingual corpus + lexicon language model 77.3
Monolingual corpus + lexicon EM 79.0
Monolingual corpus identica 11.9
Monolingual corpus spelling + context 38.6

This involves various attempts to bootstrap a translation dictionary from monolingual
corpora. Words that are identical in both languages serve as a seed to the bootstrap
process. Several heuristics are then used to extend the lexicon: similar context, similar
spelling, similar co-occurrence relations, and similar frequency. Interesting as they may
be, performance is really low.

A quantitative comparison of these methods is given in Table 2.1. As is to be expected, word
translation — including its subtask of word translation disambiguation — is significantly harder
without access to parallel text. With access to monolingual corpora only, a good lexicon is
absolutely required.

Since one of the main goals of the PreseMT project is to avoid using parallel corpora — and
since there is a huge body of work on word translation and related matters — the discussion
of related work in this chapter will be restricted to the fourth approach above, that is, to
translation using monolingual corpora in combination with bilingual dictionaries.

2.1 Lexical acquisition using vector space models

Rapp (1995) proposes a method for extracting word translations from unrelated monolingual
corpora. It is based on the idea that words that frequently co-occur in the source language also
have translations that frequently co-occur in the target language: If, for example, in a text of
one language two words A and B co-occur more often than expected from chance, then in a
text of another language those words which are translations of A and B should also co-occur
more frequently then expected. First, word co-occurrence matrices are constructed for source
and target language. Next, rows/columns of one matrix are permutated to make its counts
most similar to those in the second matrix. This results in both matrices having similar, i.e.,
translationally equivalent, words along their rows/columns. Although Rapp’s (1995) goal is au-
tomatic acquisition of word translations, the concept of exploiting the distributional similarity
between translations in the form of a vector space is similar to our approach (see Section 4.1).
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Fung and McKeown (1997) and Fung and Yee (1998) formulate Rapp’s method in terms of a
vector space model and use it to extract translation equivalents from comparable text, intro-
ducing a seed lexicon to make it computationally feasible.

Rapp (1999) continues along the same line — using a seed lexicon — to describe a practical
implementation with good results. Using a target language corpus, a word co-occurrence
matrix is computed whose rows are all word-types occurring in the corpus and whose columns
are all target words appearing in the bilingual lexicon. Given a source language word, whose
translation is to be determined, a source language corpus is used to construct a co-occurrence
vector for this word. All known words in this vector are translated to the target language. As
the seed lexicon is small, only some translations are known. All unknown words are discarded
and the vector positions are sorted in order to match the vectors of the target-language matrix.
This vector is compared to all vectors in the target language corpus. The vector with the
highest similarity is considered to be the translation of the source language word.

In many respects, this approach is almost identical to the PreseMT use of a vector space
model for WTD (which is discussed in Section 4.1). The crucial difference is a difference in
goal. Rapp’s (1999) goal is to bootstrap a bilingual lexicon, whereas our goal is to disambiguate
word translations. As a result, Rapp’s input consists of a source word in isolation for which
contexts are retrieved from a source language corpus, while our input consists of a source word
in a particular context.

Chiao et al. (2004) explore a very similar method with domain-specific comparable corpora of
limited size. In addition, they re-score translation candidates in the target language by applying
the same translation algorithm in the reverse direction and re-ranking them according to the
harmonic mean score.

Rapp and Zock (2010) claim a significant improvement over the previous algorithm (Rapp,
1999): when creating the co-occurrence vector for a source word, only the 30 most strongly
associated words are kept and all others are eliminated.

2.2 Estimating word translation probabilities using Expectation
Maximization

Koehn and Knight (2000) propose to use an n-gram model of the target language to select
translations candidates that occur in the most likely candidate sequences (as in the PreseMT
short-term approach outlined in Chapter 5), reporting an improvement in accuracy of about 2%
on German to English translation of nouns. The language model is then used in combination
with a bilingual lexicon and a monolingual corpus to estimate word translation probabilities.
This is accomplished with a form of the Expectation Maximization algorithm.

Monz and Dorr (2005) also employ an iterative procedure based on Expectation Maximization
to estimate word translation probabilities. However, rather than relying on an n-gram language
model, they measure association strength between pairs of target words, which they claim is
less sensitive to word order and adjacency, and therefore data sparseness, than higher n-gram
models. Their evaluation is only indirect as application of the method in a cross-lingual IR
setting.
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2.3 Query translation in Cross-Lingual Information Retrieval

Kishida (2005) reviews state-of-the art techniques for Cross-Lingual Information Retrieval
(CLIR), in which users search documents written in a foreign language with a query writ-
ten in their own language. The most widely used strategy is translation of the query to the
target language using machine machine-readable dictionaries. This gives rise to a term am-
biguity problem which is very similar to word translation disambiguation in MT, except that
search queries are often sets of keywords rather than proper linguistic utterances. The problem
is that if all translations listed in the dictionary are used as search terms, irrelevant terms
are likely to harm precision. Among the disambiguation techniques developed in CLIR, most
relevant to our discussion are those based on co-occurrence statistics. These are based on the
idea that correct translations of terms are more likely to co-occur in documents than incorrect
translations. Numerous researchers have taken this idea and implemented some version of it.

Ballesteros and Croft (1998) is one of the first studies about translation disambiguation using
co-occurrence statistics: “The correct translations of query terms should co-occur in target
language documents and incorrect translations should tend not to co-occur.” Their algorithm
for resolving translation ambiguities is basically as follows. Given two tagged source terms
t1 and t2, they retrieve all available translations from a dictionary. Next they generate all
possible pairs of translations (a, b) such that a is translation of t1 and b is a definition of t2.
The importance of co-occurrence of the elements in a set is measured by the em metric (Xu
and Croft, 1998), a variation on mutual information (Church and Hanks, 1989) which does not
favor infrequent co-occurrences. It essentially measures the percentage of the co-occurrences
of a and b within a window (250 words) in the target corpus, corrected for the number of
expected co-occurrences. Each set is ranked by its em score and the highest ranking set is
taken as the appropriate translation. Ballesteros and Croft (1998) compare co-occurrence and
parallel corpus methods for term disambiguation w.r.t. translation accuracy and find that the
former performs significantly better than the latter (47 out of 60 correct vs. 39 out of 60
correct). Essentially the same approach is also found in Lin et al. (1999).

Jang et al. (1999) continues in the line of Ballesteros and Croft (1998), focusing on pruning
translations. Given the source terms in the query, they first calculate the mutual information
(MI) between consecutive translation candidates by searching for co-occurrences in window of
6 words (but without crossing sentence boundaries) in the target corpus. Heuristics are then
used to prune translations. The translation pair with the highest MI is selected first and serves
as the point of departure from which the connected translations with the highest MI values are
chosen. An experiment shows improvement on IR results, but Jang et al. (1999) do not report
numbers on translation accuracy as such.

Maeda et al. (2000) use the web as corpus for scoring mutual information using a document
as the window size. They generalize mutual information for word pairs to mutual information
between an arbitrary number of words. Other measures tested include a modified Dice coef-
ficient, Log likelihood ratio and Chi-square. Their procedures for selection of translations are
described in detail, and basically rely on exhaustive search for the best translations in combi-
nation with frequency based pruning. Experiments showed no significant differences w.r.t. IR
between these measures. Slight variations on this approach can be found in Sadat et al. (2002).
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Gao et al. (2000, 2002) is also similar to Ballesteros and Croft (1998), using a similarity
measure which combines mutual information with the distance between terms (measured in
words, within the window of a single sentence). Similarity is not only calculated between
consecutive translation pairs, but between all the target candidates. A greedy algorithm is
used to find the best translations.

Qu et al. (2003) present work on WTD in the framework of CLEF-2002 (the ‘Cross-Language
Evaluation Forum’). They compare three methods:

Web method: Query the web for trigrams of translation candidates and use the number of
hits as a coherence score. Select the best-scoring translations.

Corpus method 1: Constructs all possible translations and use each of them to retrieve
documents from the target corpus. Compute the sum of the similarity scores of the top
N retrieved documents as the coherence score for the sequence.

Corpus method 2: Construct all possible trigrams of translation candidates. Compute mu-
tual information for term pairs in the trigram, and add these to get the coherence score
for the trigram. Select as translation for the first word in the trigram the alternative
which gives the best coherence score.

Experimental results show better IR performance, but Qu et al. (2003) do not report numbers
on translation accuracy as such.

Kishida (2007) provides an empirical comparison of different similarity measures and different
algorithms for selecting the best translation (in addition to pseudo-relevance feedback tech-
niques) over several data sets/language pairs. Although there are no significant differences in
terms of IR, cosine similarity in combination with a best sequence algorithm tends to give best
performance.
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Chapter 3

The SemEval word translation tasks

The work on Word Translation Disambiguation (WTD) in PreseMT partly reuses the frame-
work from two closely related tasks from SemEval 2010, namely, the Cross-Lingual Lexical
Substitution task and the Cross-Lingual Word Sense Disambiguation task. This provides a
platform for evaluation in the form of trial and test data, an evaluation method, baseline
scores, and scores of competitive systems (relying on parallel data). This chapter first reviews
relevant parts of both of these shared tasks. Modifications required to make it suitable for the
WTD task are discussed in the final section of the chapter.

3.1 SemEval-2010 Task 2: Cross-Lingual Lexical Substitution

The Cross-Lingual Lexical Substition (CL-LS) task1 (Mihalcea et al., 2010; Sinha et al., 2009)
is based on the earlier English Lexical Substitution task from SemEval-2007 in which systems
had to find an alternative (synonym) substitute word or phrase for a target word in its context
(McCarthy and Navigli, 2007). In the 2010 Cross-Lingual Lexical Substitution task, however,
only the source is English while the target word is Spanish. This makes it almost identical to
Word Translation Disambiguation except that the set of translation candidates is not given in
advance. The task may be envisioned as consisting of two steps:

1. candidate selection, which involves finding all possible translations;

2. candidate ranking, which involves finding the most likely translation among the candi-
dates.

In contrast to the Cross-Lingual Word Sense Disambiguation task described in the next section,
there is no intermediate layer of senses.

1http://semeval2.fbk.eu/semeval2.php?location=tasks#T24
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3.1.1 Data

The data consist of instances of nouns, verbs, adjectives and adverbs in a single sentence
context. The development set consists of 30 words (10 instances per word, 300 instances in
total) and the test set consists of 100 words (10 instances per word, 1000 instances in total).
Four annotators, all native Spanish speakers, provided as many adequate translations for each
word in its context as they could think of. The annotation includes for each candidate the
number of annotators that choose it (i.e., minimally 1 and maximally 4).

3.1.2 Evaluation

Participating systems produce one or more translations, where the order is significant (most
likely translation first). The evaluation basically measures the fit between the system’s trans-
lations and the annotators’ translations in terms of precision and recall, using two scoring
variants. The ‘best’ (Best) score measures the ability of the system to come up wih the best
translations, and penalizes for additional guesses. System translations are given credit depend-
ing on the number of annotators that picked each translation, while being punished for any
non-matching translations. The ‘out-of-ten’ (OOT) score allows up to ten system responses
without punishment for non-matching translations. This takes into account that there may be
good translations that the annotators had not thought of.

For both best and out-of-ten scores, there is also a ‘mode’ score, which is calculated against the
mode from the annotators responses. The ‘mode’ is the target term with the highest frequency,
and is not defined if two or more terms share this distinction. Note that the best ‘mode’ score
is not penalized by the number of submitted terms. The ‘mode’ criterion measures the ability
of the system to include the term with highest count of inter-annotator agreement.

The Best criteria are defined by McCarthy and Navigli (2007) using the following formulae.

Precision =
1

|A|
∑

ai;i∈A

∑
res∈ai freqres
|ai| · |Hi|

(3.1)

Recall =
1

|T |
∑

ai;i∈A

∑
res∈ai freqres
|ai| · |Hi|

(3.2)

And the OOT criteria as the following.

Precision =
1

|A|
∑

ai;i∈A

∑
res∈ai freqres
|Hi|

(3.3)

Recall =
1

|T |
∑

ai;i∈A

∑
res∈ai freqres
|Hi|

(3.4)

Using the following terms (here described in an informal manner):
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• ai are the answers submitted by the system,

• |A| is the number of answers,

• |T | is the number of test items,

• |Hi| is the amount of inter-annotator agreement, i.e., the sum of annotator votes for all
gold terms for this test item, and

• freqres is the number of annotator votes for this particular system answer.

3.1.3 Results

Baselines are calculated by taking the (ordered) translations from an online dictionary. Only
4 out of the 14 systems submitted have a best score above the baseline. The best system
(UBA-T) is essentially Google Translate complemented by some additional dictionaries (Basile
and Semeraro, 2010). Results are somewhat better for the out-of-ten score, but this appears
to be mainly due to the trick of adding duplicates. Virtually all systems (except for the SWAT
and TYO systems) rely on parallel text. This suggests that the task is harder without parallel
corpora.

3.2 SemEval-2010 task 3: Cross-Lingual Word Sense Disam-
biguation

The Cross-Lingual Word Sense Disambiguation (CL-WSD) task2 (Lefever and Hoste, 2010b,
2009) is very close to the Cross-Lingual Lexical Substitution task. The main difference is that
there is an intermediate level of sense clusters during the annotation stage. Annotators are
therefore not free to pick just any translation for a given source word, but first have to select the
appropriate sense cluster, and from that cluster must select up to three adequate translations.
See the original papers for a motivation of this strategy.

3.2.1 Data

The source language is English and there are five target languages: Dutch, French, Spanish,
Italian and German. In contrast to the CL-LS task, only lemmatized nouns are considered.
The annotation process has two steps. First, a sense inventory is created. This is based on
the word-alignment of the EuroParl corpus (Koehn, 2005). Alignments involving the source
word are manually checked. The corresponding target words are clustered into sense clusters.
Target words are also manually lemmatized.

Second, trial and test data is extracted from two independent corpora (JRC-ACQUIS and
BNC). The development set consists of 5 nouns (20 instances per noun, 100 instances in total
per language) and the test set consists of 20 nouns (50 instances per nouns, 1000 instances in
total per language). For each source word, annotators were asked (1) to pick the contextually

2http://semeval2.fbk.eu/semeval2.php?location=tasks#T8
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appropriate sense cluster and (2) to choose their three preferred translations from this cluster.
Translations are thus restricted to those appearing in EuroParl. The sentence-aligned parallel
text from which the sense clusters were derived was made available. The sense clusters are
available for the trial data, but not for the final test data.

Below is a sample from the trial data in XML format, where each context element provides an
English sentence which contains a surface form of the lemma ‘bank’.

<?xml version="1.0" ?>
<!DOCTYPE corpus SYSTEM "clls.dtd">
<corpus lang="english">
<lexelt item="bank.n">

<instance id="1">
<context>AGREEMENT in the form of an exchange of letters between
the European Economic Community and the <head>Bank</head> for
International Settlements concerning the mobilization of claims
held by the Member States under the medium-term financial
assistance arrangements</context>

</instance>
<instance id="2">

<context>The BIS could conclude stand-by credit agreements with
the creditor countries’ central <head>banks</head> if they should
so request.</context>

</instance>
<instance id="3">

<context>CONSIDERING the importance of the existing links between
the Community and the Palestinian people of the West
<head>Bank</head> and the Gaza Strip, and the common values that
they share</context>

</instance>
...
</lexelt>

</corpus>

The sample below of the gold standard for German lists the preferred translations corresponding
to the above instances.

bank.n.de 1 :: bank 4;bankengesellschaft 1;finanzinstitut 1;

kreditinstitut 1;zentralbank 1;

bank.n.de 2 :: bank 4;finanzinstitut 1;kreditinstitut 1;

nationalbank 1;notenbank 1;zentralbank 3;

bank.n.de 3 :: west-bank 1;westbank 2;westjordanien 2;westjordanland 2;

westjordanufer 3;westufer 2;

...
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This means, for example, that for the first instance of the English word ‘bank’, four translators
thought German bank to be a correct translation, and at least one of each translators also
considered bankengesellschaft, finanzinstitut, kreditinstitut or zentralbank to be correct.

3.2.2 Evaluation

Evaluation is almost identical to that in the Cross-Lingual Lexical Substitution task, except
that the out-of-ten score (OOT) is replaced by an out-of-five score (OOF).

3.2.3 Results

Baselines were constructed by selecting the most frequent translation(s) of the source word
according to the word-aligned EuroParl corpus. There were 16 submissions from five teams.
About half of the systems achieved a best score below the baseline. This was even worse for the
out-of-five score, where none of the systems outperformed the baseline for Spanish and Dutch,
whereas only one system was above the baseline for French, Italian and German. All systems
relied on parallel data.

3.3 Evaluation criteria

One of the advantages of reusing the word translation task framework from SemEval 2010
in the PreseMT approach to Word Translation Disambiguation is that the SemEval set-up
includes an evaluation method. However, the original evaluation measures appear to have some
deficiencies. We therefore adopt some alternatives.

3.3.1 Drawbacks of the SemEval scoring criteria

One drawback with these scoring criteria is that the maximum score obtainable for the target
terms may often be very low in absolute terms. It is our opinion that evaluation criteria should
give near perfect systems a score near the top of the scale and that the distance between two
scores should have a reasonable interpretation as difference in system quality. The original
SemEval CL-WSD criteria will potentially give low scores to very good systems. For example,
if the annotators have selected ten target terms among them and a system has submitted all
those ten and only those, the score will be the normalised sum of the words divided by the
number of submitted terms, i.e., one divided by ten (scores are reported as percentages, i.e.,
10.0). While if a system only delivers the top word and this has half of the annotator votes, it
will receive a score of 50.0. Consider item 20 in the German gold set for ‘Bank’ (the numbers
behind the gold terms are the inter-annotator agreement counts):

bank.n.de 20 :: bank 4;bankgesellschaft 1;finanzinstitut 2;geschäftsbank 1;

handelsbank 1;kreditinstitut 1;
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Here submitting the top word according to the annotators will give a score of 40.0 for this
item, while submitting all correct items will give a score of 16.0.

One may debate if favouring systems submitting fewer terms in this manner is a reasonably
scoring system for the task, but we consider it problematic that the distribution of the score
weightings are dependent on the number of gold terms and how annotator agreement is dis-
tributed among them. This has the effect of making the scaling differ between the test items,
and it is unclear whether this affects the score in an inappropriate manner.

A similar issue is the case for the OOF score: depending on the distribution of the annotator
frequency counts, a large chunk of the full score may be unobtainable by any system since
most target terms have substantially more than 5 gold candidates and all of them are part of
the normalization weight. Consider the German gold file for ‘Plant’ where 14 out of 20 test
items have more than five gold terms, and the minimum total score in the terms remaining
after the top five are removed is about 17. The maximum score attainable is by consequence
correspondingly lower. This is illustrated in the ‘perfect system’ experiments discussed in the
next section. There is also substantial variation in the unavailable test item scores with the
standard deviation being 10 over the items with more than five gold terms.

The lack of scaling between the theoretical maximum and minimum score is a clear drawback
of these criteria. But what may be a more serious problem is the manner in which the scaling
varies with the distribution of frequency counts among the gold terms of a test item. In other
words, the scores are not normalized across words. One way to visualize this is to consider
that the score is penalized by dividing by the number of submitted terms, which gives the
system that submits a number of terms close to the amount that cover most of the weight of
the annotator agreement for this particular item an advantage in the scoring, an effect which
is debatable at best and which varies over the test items.

3.3.2 ‘Perfect system’ scoring

In order to illustrate the maximum score attainable with the SemEval evaluation method, we
simulated a perfect system for both the Best and OOF criteria. As can be seen in Table 4.5,
the scores varied from around 0.20 to 0.50 for Best and 0.80 to 0.95 for OOF. This makes it
difficult to compare scores and analyze improvements over time or over target terms. It may
also make the mean of scores rather meaningless as a test statistic.

The perfect OOF system submits the five target terms with the highest annotator agreement
weight, while the perfect Best system submits the single top annotator agreement term, min-
imizing the penalty for submitting multiple candidates. It might be possible to construct a
slightly better perfect Best system by carefully studying the inter-annotator agreement distri-
butions, but we believe that the difference will be slight, if it exists at all.

Looking at the ‘perfect system’ scores alongside the published baseline we can see the differ-
ences in score range which has to be taken into consideration when analyzing results by these
evaluation criteria. One should also note that the more robust OOF or simple Best ‘mode’
score might be more easily understood in terms of system improvement. But the Best ‘mode’
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Table 3.1: The Best and OOF scores for the target terms from the published baseline and our
simulated perfect system

Bank Movement Occupation Passage Plant

Best baseline 2.49 3.91 13.45 4.58 11.70
Perfect Best 42.71 28.78 30.40 37.29 29.58
OOF baseline 23.23 20.34 32.78 27.35 21.06
Perfect OOF 95.60 82.62 93.58 89.57 81.97

score hinges on the system selecting the single ‘mode’ term, and the OOF score encourages
the system to aggressively submit candidates which would be undesirable behaviour from the
PreseMT Corpus Modelling Module.

In the context of development of the Corpus Modelling Module, Recall is not very relevant for
any of the scoring criteria since the WTD aims to produce a set of target terms for any head.
As a result the Recall will always be equal to the Precision, since coverage is 100% by design.

3.3.3 Alternative evaluation measures

As discussed above, the Best measure has some deficiencies, most importantly that it is not
normalized between 0 and 1. This results in a very uneven spread of scores, both among different
target words and among the individual test sentences for each word, making it difficult — or
not even meaningful — to judge differences in system performance by looking at average scores.
Hence rather than using the original Best score, we adopt the normalized variant proposed by
Jabbari et al. (2010), here referred to as BestJHG. The formal description of these measures
below also closely follows the formalisation by Jabbari et al. (2010).

For each sentence ti, (1 ≤ i ≤ N , N the number of test items), let Hi denote the set of
human translations. For each ti there is a function freq i returning the count of how many
annotators chose it for each term in Hi (0 for all others) and a value maxfreq i for the max-
imum count for any term in Hi. The pairing of Hi and freq i constitutes a multiset repre-
sentation of the human answer set. Let |S|i denote the multiset cardinality of S accord-
ing to freq i, i.e.,

∑
a∈S freq i(a), the sum of all counts in S. For the first example in dis-

cussed in Section 3.2.1: H1 = {bank, bankengesellschaft, kreditinstitut, zentralbank, finanzinstitut};
freq1(bankengesellschaft) = 4, freq1(bank) = 1, etc; maxfreq1 = 4; and |H1|1 = 8.

The BestJHG measure is defined as follows

BestJHG(i) =

∑
a∈Ai

freq i(a)

maxfreq i × |Ai|
(3.5)

where Ai is the set of translations for test item i produced by the system. The optimal score of
1.0 is achieved by returning a single translation whose count is maxfreq i, with proportionally
lesser credit given to answers inHi with smaller counts. In principle a system can output several
candidates in order to “hedge its bets”, but there is a penalty for non-optimal translations, so
the best strategy appears to be to output just one. The systems in our experiment always
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produced a single translation for the BestJHG score, so |Ai| = 1 always. In the first example
of Section 3.2.1, the system output A1 = {bank} would give BestJHG(1) = 1.0 whereas A1 =
{bankengesellschaft} would give BestJHG(1) = 0.25 and A1 = {ufer} would give BestJHG(1) =
0.0.

The Out-Of-Five (OOF) criterion, which measures how well the top five candidates from the
system match the top five translations in the gold standard, can be formalized in the same
notation:

OOF (i) =

∑
a∈Ai

freq i(a)

|Hi|i
(3.6)

In this case systems are allowed to submit up to five candidates of equal rank. It is a recall-
oriented measure with no additional penalty for precision errors, so there is no benefit in
outputting less than five candidates. With respect to the previous example from Section 3.2.1,
the maximum score is obtained by system output A1 = {bank, bankengesellschaft, kreditinstitut,
zentralbank, finanzinstitut}, which gives OOF (1) = (4+1+1+1+1)/8 = 1, whereas A1 = {bank,
bankengesellschaft, nationalbank, notenbank, sparkasse} would give OOF (1) = (4 + 1)/8 = 0.625.
One remaining problem with the OOF measure is that the maximum score is not always one,
i.e. not normalized, because sometimes the gold standard contains more than five translation
alternatives.

For assessing overall system performance, the average of BestJHG or OOF scores across all test
items for a single source word is taken. The “mode” variant of both scores were not used in
the evaluations for reasons explained by Jabbari et al. (2010).

3.4 Baseline and maximum scores

Two baselines were calculated on the Semeval CL-WSD data for German using BestJHG and
OOF measures. In addition, maximum scores were calculated to serve as an upper bound on
system performance. These scores are listed in Tables 3.2 and reftab:oof-baseline-scores.

The first baseline (MostFrequentBaseline) does not rely on parallel corpora. It consists of
simply selecting the translation candidate(s) whose lemma occurs most frequently in the deWaC
corpus. It therefore completely ignores the context of the words. This results in generally low
scores on the BestJHG measure, even though the OOF scores for bank and occupation are high.
The low scores may be due to differences between predominant translations in Europarl and
in deWaC. Another factor which may reduce the efficiency of target side frequencies is that
the word counts can be “polluted” because a certain German word is also the translation of
another very frequent English word, a problem discussed by (Koehn and Knight, 2000, Section
3).

The second baseline (MostFrequentlyAligned) does rely on parallel corpora and was also used
in the original CL-WSD shared task. It is constructed by taking the translation candidate most
frequently aligned to the source word in the Europarl corpus with manually corrected source
word alignments. As expected, the BestJHG scores are consistently much higher than those of
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Bank Movement Occupation Passage Plant Mean
MaxScore 100.00 100.00 100.00 100.00 100.00 100.00
MostFreqAlignBaseline 6.25 19.17 35.83 15.00 40.00 23.25
MostFreqBaseline 1.25 5.00 2.50 1.67 10.26 4.14

Table 3.2: BestJHG baseline and maximum scores on CL-WSD trial data

Bank Movement Occupation Passage Plant Mean
MaxScore 95.60 82.62 93.58 89.57 83.22 88.92
MostFreqAlignBaseline 23.23 20.34 32.78 27.25 21.06 24.93
MostFreqBaseline 31.69 14.17 40.02 6.63 20.04 22.51

Table 3.3: Out-of-five (OOF) baseline and maximum scores on CL-WSD trial data

the first baseline. However, this is not so with regard to the OOF scores, which are lower than
the first baseline for bank and occupation.

The maximum BestJHG score is 100 by definition. However, the maximum OOF score varies
per word depending on distribution of translations in the gold standard. This drawback of the
OOF score was discussed in Section 3.3.1. Maximum OOF scores on the CL-WSD data for
German vary between 82 and 96 percent.
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Chapter 4

Vector Space Modelling

4.1 Introduction

One of the major challenges in machine translation is that, according to a bilingual dictionary
or some other translation model, a source language word can often have several translations
in the target language. For instance, the English word knight may be translated as the Dutch
word ridder in the context of medieval history, but as paard in the context of a chess game.
Determining the correct translation in a given context is called called Word Translation Dis-
ambiguation (WTD).

WTD can be regarded as a ranking and filtering task. It is akin to word glossing or word-
for-word translation provided that all translations candidates can always be retrieved from a
bilingual dictionary. This is therefore different from full word translation, because it is assumed
that all possible translations are given in advance, which is not the case in the more general
task of full word translation. Full word translation can be regarded as a two-step process: (1)
generation of word translation candidates, followed by (2) word translation disambiguation.
Full word translation thus requires an extra step in which translation candidates are generated.
Solving WTD would nevertheless partly solve full word translation and is therefore worthwhile
to pursue.

One of the features which distinguishes the PreseMT approach to MT from mainstream sta-
tistical MT is that it tries to avoid relying on large parallel text corpora for training purposes,
a resource that is both scarce and expensive. Instead, it aims at learning patterns in the
source and target language, and the mapping between them — from large annotated mono-
lingual corpora only. In a similar vein, most empirical approaches to WTD crucially depend
on word-aligned parallel text (cf. Chapter 2). In contrast, our goal is to develop data-driven
methods for WTD that do not require any parallel text, but rely solely on the combination of
bilingual dictionaries and large-scale monolingual corpora. Even though it is unrealistic that
such methods would exceed those based on parallel text in terms of performance, we ultimately
aim to bridge the gap in performance between the two.

The basic idea underlying the approach described in this chapter is simple. Suppose we have
the English sentence The knight left the castle and we want to translate the English word knight

PreseMT — Deliverable 3.3.2 — NTNU — Version 0.7 — January 18, 2012



22 Chapter 4.

into Dutch. We have a machine-readable English-Dutch translation dictionary at our disposal
which tells us that the corresponding translation is either ridder or paard.1 Furthermore, we
have access to a corpus of Dutch text from which we retrieve sentences containing either ridder
of paard. Suppose we find Kasteel Ammersoyen was eigendom van ridder Floris and Het witte
paard gaat naar veld f4. Next we look for the Dutch sample sentence which most closely
matches our English sentence, or more precisely, the Dutch sample of which the context of
ridder/paard most closely matches the context of knight. Obviously, directly matching English
to Dutch contexts is not going to work, so we first translate the input context from English
to Dutch. Given the intention in PreseMT to limit resources to monolingual corpora and
bilingual dictionaries, we do not use an MT system to translate contexts, but rather carry out
a word-for-word translation by dictionary look-up. Literal translation of the Dutch samples
above gives us castle Ammersoyen was owned by knight Floris and the white horse goes to
square f4 respectively. We can now conclude that the first translated sample is more similar to
our English input than the second one, because they share the word castle. As the first sentence
is a sample for translation candidate ridder, we consider this as support for translating knight
as ridder rather than paard in the given context.

Evidently this outline of the appraoch is a huge simplification which abstracts away from
many important questions. For instance, word-for-word translation of the context is in itself
very likely to contain translation ambiguity. At the heart of the matter is how to determine
similarity between input context and sample context.Since this is a key issue in many NLP
tasks, numerous approaches have been proposed in the literature, ranging from simple measures
for word overlap and approximate string matching (e.g., Navarro, 2001), through WordNet-
based and corpus-based word similarity measures (e.g., Mihalcea et al., 2006), to elaborate
combinations of deep semantic analysis, word nets, domains ontologies, background knowledge
and inference (e.g., Androutsopoulos and Malakasiotis, 2010).

The approach to similarity we take here is that of Salton’s (1989) Vector Space Models (VSM).
These models were orginally developed in the context of Information Retrieval in order to
find documents in a document collection which match a given user query. The same idea has
been applied to find semantically similar words, commonly known as Distributional Similarity
Models or Word Space Models (Dumais et al., 1997; Schütze, 1998). Good introductions to
VSM are given by, e.g., Manning and Schütze (1999), and in Stefan Evert’s tutorials.2 These
models are based on the assumption that the meaning of a word can be inferred from its usage,
i.e., its distribution in text (Harris, 1954). That is, words with similar meaning tend to occur
in similar contexts. This idea has a long tradition in Linguistics, as exemplified by Firth’s
(1957) famous statement “You shall know a word by the company it keeps!”

Vector space models for words are created as high-dimensional vector representations through
a statistical analysis of the contexts in which words occur. Similarity between words is then
defined as the similarity between their context vectors in terms of some vector similarity mea-
sure, usually cosine similarity. A major advantage of this approach to similarity is the balance
of reasonably good results with a simple model. What makes it particularly attractive in the
context of PreseMT is that it does not require any external knowledge resources besides a
large text corpus and that it is fully unsupervised (i.e., no need for human annotation).

1In reality there are more translation candidates, but for the sake of exposition we assume there are just
two.

2http://wordspace.collocations.de/doku.php/course:start
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The way we apply vector space modelling to disambiguation is as follows. First training and
test instances are converted to feature vectors in a common multi-dimensional vector space.
Next this vector space is (optionally) reshaped by applying one or more transformations to it.
The motivation for a transformation can be, for example, to reduce dimensionality, to reduce
data sparseness or to promote generalization. Finally, for each of the vectors in the test corpus,
the n most similar vectors are retrieved from the training corpus using cosine similarity, and
translation candidates are predicted from the target words associated with these vectors.

Since at the start of this work the PreseMT MT system was not sufficiently developed to
serve as a test platform for WTD experiments, we reused the framework from the SemEval 2010
Cross-Lingual Word Sense Disambiguation (CL-WSD) task, as described in Chapter 3. More-
over, this dataset provides multiple translations per source word, which alleviates the general
problem in evaluation of MT that there is usually more than one correct way to translate a
word. Work reported in this chapter concerns the English-to-German part of the Cross-Lingual
Word Sense Disambiguation task.

The remainder of this chapter is structured as follows. Section 4.2 describes general data
collection and processing: how training data was sampled from text corpora and annotated
with linguistic tools, as well as derivation of test data from the Semeval data. The creation of
vectorized train and test corpora is described in Section 4.2.2. Next Section 4.4 explains corpus
transformations, translation prediction and scoring. Results from experimental evaluation are
presented in Section 4.5.

4.2 Data collection and preprocessing

In order to reuse the data from the Semeval CL-WSD task, some modifications are necessary. As
the task provides no training data, this needs to be to collected in some other way. In addition
both training and test data have to be linguistically preprocessed. This section describes data
collection and preprocessing for the German part of the CL-WSD data set in order to obtain
training and test data for VSM-based WTD.

4.2.1 Construction of training data

The construction of training data involves three steps: extracting translation candidates, re-
trieving translation samples, and tagging and lemmatizing the samples. More in detail, these
steps entail the following.

Step 1: Extract translation candidates
The SemEval CL-WSD task is essentially a word translation task which involves two subtasks:

1. finding translations candidates;

2. ranking and filtering translation candidates.
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The WTD task equals subtask 2, so this work abstracts away from subtask 1 by assuming that
a perfect solution to finding translation candidates already exists. This amounts to assuming
that all translation candidates are present in the translation dictionary. In practice this is
accomplished by extracting all possible translations from the gold standard. For the English
lemma bank, for instance, the translation candidates extracted from the trial gold standard for
German are3

bank, bankanleihe, bankanstalt, bankdarlehen, bankengesellschaft,
bankensektor, bankfeiertag, bankgesellschaft, bankinstitut, bankkonto,
bankkredit, banknote, blutbank, daten, datenbank, datenbanksystem,
euro-banknote, feiertag, finanzinstitut, flussufer, geheimkonto,
geldschein, geschäftsbank, handelsbank, konto, kredit, kreditinstitut,
nationalbank, notenbank, sparkasse, sparkassenverband, ufer, weltbank,
weltbankgeber, west-bank, westbank, westjordanien, westjordanland,
westjordanufer, westufer, zentralbank

Step 2: Retrieve translation samples
For each of the translation candidates, we collect examples of its use in context. These context
samples are retrieved from a large annotated text corpus in the target language. For German,
we use the DeWac corpus which contains over 1.6 billion words, as presented by Baroni et al.
(2006). This corpus was made available through the SketchEngine within the context of the
PreseMT project (Kilgarriff et al., 2004). We used the Python bindings to the Sketch Engine’s
backend – Manatee – to find occurrences of a particular translation in the DeWac corpus and to
retrieve German sentences containing this word. Some examples for Bank (financial institute):

Zur Zeit gibt es insgesamt elf Geschäfte sowie zwei Banken und neun
Restaurants in den Terminals.

Einem Zeitungsbericht zufolge sucht die Deutsche Bank im Auftrag von Stada
bereits nach einem geeigneten Käufer.

and for Ufer (river bank):

Taucht bis ihr einen Felsen am linken Ufer seht.

Bei etwas über 8 Metern tritt der Rhein in Beuel über die Ufer.

Separate sets of sentence contexts were collected, both based on the occurrence of the word
form and on the matching lemma. Most of the 243 different gold terms (in total, for the
five head words shown in Table 4.5, i.e., Bank, Movement, Occupation, Passage, and Plant)

3Note that the possible German translations of the English word bank include all translations of English
compounds containing bank. For instance datenbank as translation of data bank, blutbank as translation of blood
bank, and so on. This peculiarity is due to design decisions by the creators of the CL-WSD data set.
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Table 4.1: Frequency bins for the CL-WSD German gold terms collected from DeWaC, retrieved
on the basis of their word form or lemma.

0-10 11-100 101-100 1000+

Word 39 27 55 122
Lemma 40 21 52 130

are found in the corpus — around 15 have a frequency of 0, but otherwise the frequencies
naturally vary substantially. Frequency bins are shown in Table 4.1. Some of the terms have
a large frequency in the corpus, often more then 500, 000 occurrences. We sampled up to 5000
random sentence contexts to avoid collecting an excessive amount of data. In our subsequent
experiments, we used samples retrieved on the basis of the source lemma, because the corpus
coverage is slightly better for lemma than for word form.

Step 3: Tag and lemmatize samples
Sample sentences are tokenized, POS tagged and lemmatized using the TreeTagger for German
(Schmid, 1994). Example of tagger output:

Bei APPR bei
etwas PIS etwas
über APPR über
8 CARD 8
Metern NN Meter
tritt VVFIN treten
der ART d
Rhein NE Rhein
in APPR in
Beuel NN <unknown>
über APPR über
die ART d
Ufer NN Ufer
. $. .
<s>

By now, the DeWac corpus has been reliably tagged and lemmatized using the TreeTagger as
part of the work in WP3.1, so this step is in principle no longer required. Instead lemma and
POS tags can be directly obtained from the corpus.

4.2.2 Construction of test data

Construction of test data takes the following steps:

Step 1: Tag and lemmatize
English sentences from the CL-WSD trial or test data are tokenized, POS tagged and lemma-
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tized using the TreeTagger for English (Schmid, 1994). The lemmas and POS tags are required
to perform the next step.

Step 2: Word-for-word translation of context
The trial/test data consists of English words in context, whereas the training data consists
of German words in context. Hence if we want to match a test instance to the most similar
training samples, we need to overcome the difference in language. This can be accomplished
in two ways: either translate the context of a test instance to the target language (English to
German in this case), or translate the context of all training instances to the source language
(German to English in this case). The first option involves less work, because the test data set
is much smaller than the training data set. The second option would be faster in a real online
WTD system, because translation of the training data can be done off-line in advance. In our
experiments, we have used the first option and translated the contexts of test instances.

Given the intention in the PreseMT project to limit the resources for MT in general – and
therefore also for resources used in WTD specifically – to monolingual corpora and bilingual
dictionaries, we do not use an MT system to translate contexts, but rather carry out a word-
for-word translation by lookup in a bilingual dictionary. For English to German translation, we
currently use a reversed version of the GFAI dictionary (an extension of the Chemnitz dictionary
with over 900K entries), which is also used in the PreseMT online MT system. Translations
are looked up for both the word form and the lemma. In case multiple translations for a word
are found, simply all alternative translations are included. POS information is currently not
exploited for look-up, but may be explored in future research.

Below is a truncated example of a word-for-word translation of a test instance:

The die,der,dat,dem,den,das
Office Behörde, Offizium, Dienststelle,

Dienst, Amtsstube, Kontor, Aufgabe,
Funktion, Posten, Schalter,
Dienstraum, Ausgabe, Schreibbüro, ...

may kann, dürfen, kannst, möge, können,
dürft, mag, darfst, Weiβdornblüte,
könnt, darf

also noch dazu, des Weiteren, ebenso,
ebenfalls, auch, auβerdem, ooch,
ferner, und auch, des weiteren

make Marke, Erzeugnis, Herstellung,
Faktur, Machart, Fabrikat

available lieferbar, frei, zur Verfügung
stehend, abkömmlich, zugänglich,
benutzbar, abrufbar, nutzbar,
erhältlich, greifbar, vorgelegen,
disponibel, vorhanden, ...

4.2.3 Dictionary coverage

The project has three sets of English-German dictionaries available:
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Table 4.2: GFAI dictionary coverage of the CL-WSD candidates in terms of number of words
and annotator agreement counts.

Source Annotator coverage Word coverage

Bank 59/186 4/41
Movement 32/225 2/75
Occupation 145/220 7/28
Passage 77/195 8/43
Plant 99/237 10/61

Table 4.3: CC dictionary coverage of the CL-WSD candidates in terms of number of words
and annotator agreement counts.

Source Annotator coverage Word coverage

Bank 41/186 2/41
Movement 22/225 1/75
Occupation 147/220 8/28
Passage 80/195 13/43
Plant 83/237 7/61

1. the freely available CC dictionary, which is an internet-based German-English and
English-German dictionary based on user generated word definitions. It is available
at http://www.dict.cc/.

2. the Chemnitz dictionary, which is an electronic German-English dictionary containing
over 470 000 word translations. It is GPL licensed and available at http://dict.
tu-chemnitz.de/.

3. the GFAI dictionary, which is a substantially extended version of the Chemnitz dictionary
providing over 900 000 entries.

We have performed a study of how these dictionaries cover the SemEval target word clusters,
as shown in Tables 4.2, 4.3 and 4.4 on Page 27. The results are generally positive, with the best
quality dictionary covering nearly all the terms considered ‘modes’ in the SemEval trial data,
and generally the dictionaries cover the top end of terms when ranked according to annotator
agreement.

The GFAI dictionary generally has the highest coverage, with the exception of the CC dictio-
nary covering a larger number of target terms for the source lemma Plant.

The coverage of annotator modes and the target terms with highest inter-annotator agreement
shows that the SemEval trial and evaluation data may be suitable for judging the quality of
the full WTD system.
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Table 4.4: Chemnitz dictionary coverage of the CL-WSD candidates in terms of number of
words and annotator agreement counts.

Source Annotator coverage Word coverage

Bank 48/186 2/41
Movement 22/225 1/75
Occupation 90/220 3/28
Passage 54/195 5/43
Plant 72/237 4/61

4.3 Creating corpora

In order to create the corpora, we first need to create the vocabulary, and can then move on
to creating both the training and the test corpora, as follows.

Step 1: Create vocabulary
Given the joint set of samples for all possible translations of a particular source word (e.g.,
bank), we create a vocabulary. The vocabulary can be regarded as the features which model
the context of a target word. They help to discriminate among translation candidates. There
are many ways to create a vocabulary. The one used so far in PreseMT is rather pragmatic
and straight forward. To begin with, we work with the lower-cased lemmas as provided by
the tagger, only backing off to lower-cased token when the tagger fails to provide a lemma.
The vocabulary thus initially consists of all lemma types occurring in all the samples. Next,
all function words are removed on the basis of the POS tag. Additionally, all words below
and above certain frequency cut-offs are removed. As in Text Retrieval, the assumption is
that very high-frequent words have little discriminative power, whereas the contribution of
very low-frequent words will be insignificant. The exact values of these two thresholds are
experimental parameters. Finally, each vocabulary term is mapped to a unique integer id for
efficient storage.

Step 2: Create training corpus
Each context sample is converted to a labelled feature vector. The vector’s features correspond
to the vocabulary terms and their values correspond to the number of times that a particular
term occurs in the given sample sentence. The class label is the correct translation. This
results in a training corpus of (sparse) labelled feature vectors like this:

0, 0, 0, 1, 0, 0, 2, 0, 0, ..., 0, 0, 0, bank
0, 0, 1, 0, 0, 0, 0, 0, 0, ..., 0, 0, 0, bank
0, 0, 1, 0, 0, 0, 0, 1, 0, ..., 0, 0, 0, bank
...
0, 0, 0, 1, 0, 0, 0, 0, 0, ..., 0, 0, 0, ufer
1, 0, 0, 0, 0, 0, 0, 0, 0, ..., 0, 1, 0, ufer
0, 0, 0, 1, 0, 0, 0, 0, 0, ..., 1, 0, 0, ufer
...
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Step 3: Create test corpus
Finally each word-for-word translated source word context is converted to a feature vector
in the same way as for the training samples, using the same vocabulary, resulting in a test
corpus of (sparse) feature vectors. The only real difference is that the class label — that is,
the German translation of the focus word — is unknown. In addition, test vectors tend to be
somewhat denser, because all possible translations of context words are included during the
word-for-word translation.

4.4 Prediction

The translation candidates are predicted from the target words associated with the vectors in
the training corpus. Prediction with a vector space model takes the following steps:

Step 1: Construct corpus transformation
The training corpus is used to construct a transformation that transforms a corpus from one
vector space to another, possibly with a lower dimensionality than the original corpus. We
currently use the Gensim toolkit (Řehůřek and Sojka, 2010) also for this step. It supports
several types of transformations, whereas others (e.g. PMI and SUM) were newly implemented.

• The TF*IDF (“term frequency times inverse document frequency”) transformation (Jones,
1972) is a well-known feature weighting scheme from Information Retrieval which gives
more weight to frequent terms within a single document, while at the same time reducing
the weight of terms occurring in many other documents. In terms of the PreseMT
WTD task, it means that words occurring in many contexts receive less weight than
those occurring in only a few contexts. However, as this is completely unrelated to the
class label, it may actually reduce the weight of discriminative words.

• Pointwise Mutual Information (PMI) is another weighting method commonly used in
vector space models for word similarity Church and Hanks (1990). It measures the
association between translations candidates and context terms, and should give higher
weight to terms with more discriminative power.

• Latent Semantic Indexing (LSI) reduces the dimensionality of the vector space by apply-
ing Singular Value Decompostion Deerwester et al. (1990). It is claimed to model the
latent semantic relations between terms and address problems of synonymy and poly-
semy, hence increasing similarity between conceptually similar context vectors, even if
those vectors have few terms in common Dumais et al. (1997).

• Random Projection (RP), also known as Random Indexing (RI), is another way to reduce
the dimensionality of the vector space by projecting the original vectors into a space of
nearly orthogonal random vectors. RP is claimed to result in substantially smaller ma-
trices and faster retrieval without significant loss in performance Sahlgren and Karlgren
(2005).

• Summation (SUM) sums all context vectors for the same translation candidate, resulting
in a centroid vector for each translation candidate. In contrast to LSI and RP, it reduces
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the number of vectors (rows) rather than the number of dimensions (columns). It is
attractive from a computational point of view because the resulting matrix becomes
relatively small.

Step 2: Transform corpora
One or more corpus transformations are used to transform both training and test corpora,
resulting in feature weighting and/or dimensionality reduction.

Step 3: Index training corpus
The training corpus is indexed to facilitate fast search for similar vectors. This is primarily an
optimization step.

Step 4: Translation prediction
For each unlabeled vector in the test corpus (corresponding to an English word), the training
corpus is searched for the most similar vectors and the associated labels provide the transla-
tions. Cosine similarity is used to calculate vector similarity. For scoring on the Best measure,
the single best matching vector in the training corpus is used. For scoring on the Out-Of-Five
measure’q, taking the top five does not work, because all five may have the same label. There-
fore first the n best matching vectors are retrieved (by default n = 1000 in our experiments).
Next the cosine similarities of all vectors with the same label are summed and the five labels
with the highest summed cosine similarity constitute the predicted translations.

Step 5: Scoring
Scoring compares predictions against the gold standard files and outputs a number of scores.
Initially the orginal CL-WSD scoring Perl script was applied, but this has been superseded by
our own implementation which in addition to the orginal scoring measures calculates a number
of other evaluation measures, including the preferred BestJHG. (cf. Section 3.3.3).

4.5 Experimental results

This section reports experimental results on the CL-WSD trial data for German. Results for
different models in terms of the BestJHG score and Out-of-five scores are listed in Table 4.5
and Table 4.6 repectively. Several general observations can be made. To begin with, the scores
on passage tend to be lower than those on bank, occupation and plant. To a lesser extent, the
same holds for scores on movement, keeping in mind that max OOF score on movement is also
lower. It seems there is no correlation with the number of translation candidates though, as
passage has 42 whereas bank and plant have 40 and 60, respectively.

Furthermore, even though most models often outperform both baselines on some words, there
is no model that consistently outperforms both baselines on all five words. Although the
SumModel comes close, it has a problem with passage. In general, all models have their lowest
score on passage. Looking at the mean scores over all five words, however, the SumModel
outperforms both baselines. This is a promising result considering that the SumModel is the
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Bank Movement Occupation Passage Plant Mean
RP (300) 15.83 17.50 11.25 5.42 20.00 14.00
LSI (200) 30.42 11.25 21.25 9.17 20.42 18.50
SumModel 43.75 17.50 37.92 7.92 43.75 30.17
PMI 32.08 21.25 26.67 2.92 38.33 24.25
TF*IDF 20.00 11.67 35.83 3.33 23.33 18.83
BareVSM 28.33 10.00 37.08 9.58 17.08 20.42
MostFreqAlignBaseline 6.25 19.17 35.83 15.00 40.00 23.25
MostFreqBaseline 1.25 5.00 2.50 1.67 10.26 4.14

Table 4.5: BestJHG scores for different VSM models on CL-WSD trial data (underlined=above
both baselines; bold=highest)

smallest and does not rely on parallel text. This in fact prompted us to choose the SumModel
for implementation in the PreseMT MT system.

In a similar vein, no model consistently outperforms all others. For instance, even though
SumModel yields high OOF scores on four out of five words, PMI scores higher on plant. LSI
seems to provide no improvements over the BareVSM. RP performed badly, which may be
related to implementation issues.

TF*IDF seems to give slightly worse results in comparison to BareVSM. A possible explanation
is that its feature weighting is unrelated to vector labels, so it may actually reduce the weight
of discriminative context words. PMI, which does take the vector label into account, gives a
slight improvement over BareVSM on the BestJHG score. PMI is known to be deficient for rare
words, which may explain the lack of a major result.

We also ran experiment combining transformations for feature weighting and dimesionality
reduction, such as a combination of TF*IDF and LSI, but this yielded results worse than the
basic models presented here.

To sum up, the results onWTD with vector space modelling are fairly good. The first baseline of
always choosing the most frequent translation candidate is easily surpassed. Even the second
baseline, which required word-aligned parallel text corpora, is often exceeded, although not
consistently. The rather large range of VSM scores suggests that the approach holds more
potential, but that the factors determining performance are not yet well understood. Evaluation
on more data may shed light on these issues.

PreseMT — Deliverable 3.3.2 — NTNU — Version 0.7 — January 18, 2012



32 Chapter 4.

Bank Movement Occupation Passage Plant Mean
MaxScore 95.60 82.62 93.58 89.57 83.22 88.92
RP (300) 24.80 12.65 22.70 8.82 21.63 18.12
LSI (200) 47.07 12.61 35.40 17.03 35.61 29.54
SumModel 52.59 28.01 42.03 17.72 32.54 34.58
PMI 41.00 16.33 38.41 15.47 38.52 29.95
TF*IDF 37.76 12.31 27.72 12.16 25.00 22.99
BareVSM 47.88 13.86 40.83 14.60 28.33 29.10
MostFreqAlignBaseline 23.23 20.34 32.78 27.25 21.06 24.93
MostFreqBaseline 31.69 14.17 40.02 6.63 20.04 22.51

Table 4.6: Out-of-five (OOF) scores for different VSM models on CL-WSD trial data (under-
lined=above both baselines; bold=highest)
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Chapter 5

Statistical N-gram Modelling

5.1 Introduction

As discussed in Chapter 1, the Corpus Modelling Module is aiding the Translation Equivalent
Selection Module in such tasks as translation disambiguation and word ordering. Given that
this is ongoing research, the need for language models of various sorts (lemma-based, word-
based, POS-based or combinations thereof) may change. The establishment of a framework
which allows for the rapid creation of new large language models of high order is therefore a
contribution to the project even if the language models built in the development phase might
not be used in the final version of the PreseMT system.

The main challenge is the scale of the models, as they are trained on text corpora comprising
billions of words. This means that substantial CPU time and memory are required. An
efficient solution to this was found in parallelization. The first part of this Chapter describes
our approach to fast construction of huge n-gram models. This is followed by an intrinsic
evaluation of the models.

The second part of this Chapter presents an application of language models to the WTD task.
We present results on WTD using the Semeval CL-WSD data.

5.2 Methodology

The n-gram models are built with the standard tool IRSTLM (Federico and Cettolo, 2007).
With large amounts of data this poses challenges in terms of speed and storage, but it lends
itself well to data parallelization. It was decided to adapt IRSTLM scripts to the OpenPBS
queue handler (a system which distributes jobs to a cluster) and create SRILM scripts to do
the same.

The alternative to the adaptation of present tools would be implementing a new language model
framework. Even though conceptually simple, it would still involve a reasonably large (and
somewhat wasted) effort to create a fully-fledged tool with the state-of-the-art functionality
offered by the two aforementioned frameworks.
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NTNU has access to a cluster, Kongull, which is a 96 node cluster partitioned in equal parts of
nodes with 48G and 24G RAM. The cluster uses a Linux operating system, with the OpenPBS1

job scheduler.

The IRSTLM software package already had scripts for parallel treatment of data developed
for another (closed) version of the PBS system, and this was changed to adhere to the slightly
different syntax of OpenPBS. The parallelization step works as follows:

1. A dictionary is compiled for the whole input corpus.

2. The corpus is sectioned into n sections according to word frequency.

3. N-grams are counted for each section.

4. (Sub-)LM scores are computed.

5. Files are merged into one LM .

Steps 3 and 4 are the steps that are carried out in parallel on each node. A bash script submits
the jobs to the PBS queue and tells the jobs to delay merging until all jobs have successfully
finished.

IRSTLM also uses scripts to section up the building of the LMs because of resource constraints,
but doing this serially. It was therefore easy to ensure that the parallel processing gave the
same output, and assess the speedup factor (which also would be affected by other uses of the
cluster).

5.3 Corpora

In the development of the corpus modelling scripts, three corpora of German (17GB), Italian
(13GB), and English (33GB) were used. The corpora were mined from the web in Task T3.1 by
Masaryk University. As the process of parallelizing the creation of the n-gram models involves
sharding (dividing the corpus into parts) the corpora and counting n-grams for each shard, it
was necessary to test with the full versions to ensure data integrity when merging large files.
In development some errors related to file locking did not appear unless a big file was input.
The corpora are presented in a multi-token format, presenting the wordform, lemma, and part
of speech (POS), all of which could be extracted to build n-gram models over.

5.4 Language Models

The IRSTLM framework can output LMs in an internal format, the ARPA LM format, as well
as a compiled version for quicker access with IRSTLM tools (the local platform is Linux/amd64,
but the compile step can be done on any architecture).

1http://www.mcs.anl.gov/research/projects/openpbs/
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The German data was also filtered through the tokenizer from the TreeTagger (Schmid, 1994),
as well as cut at length 50. Lemma-based LMs were also filterted through a set of tokenization
steps, rules that filter out apparent noise and words that have been split in two by mistake
(typical German prefixes). (The web corpus includes multiples of words and special characters
of arbitrary length.) The corpus was not lowercased, and still contained a lot of noise, as words
beginning with special characters (i.e., “-Bus”, etc). A LM for a 3Bn word corpus was built in
half a day with this infrastructure (depending on system load).

N-gram models of various sizes and nature (built over words, lemmas or POS) are unavoidable
baselines when building novel models of language. The LMs currently used in the PRESEMT
system are lemma-based.

5.5 Intrinsic evaluation

As the performance of the language models will have to be measured relative to the purpose
for which they have been created (MT in our case), they are not currently evaluated. However,
some form of intrinsic evaluation can be carried out on held-out portions of the corpus. A
sample is given by the following statistics for the German corpus, as obtained by the IRSTLM
evaluation facility (Federico et al., 2010):

Nw = 316, 521, 965

PP = 2718.03

PPwp = 328.11

Noov = 2, 339, 456

OOV = 0.74

Where Nw is the total number of words in the evaluation corpus, PP is the perplexity, and
PPwp reports the contribution of out-of-vocabulary (OOV) words to the perplexity. The out-
of-vocabulary word term OOV is defined as Noov/Nw ∗ 100, with Noov being the number of
OOV words. It is interesting to note that only 0.74% out-of-vocabulary words are obtained on
an enormous corpus, even without removing capitalization.

In addition to this, some statistics on the dictionary creation can be retrieved based only on
the input corpus, as shown in Table 5.1 on Page 36, where a dictionary of size 898, 720 was
induced from the in total 29, 693, 694 words in the original German corpus. The first three
columns of the table show the percentage of words in the training corpus whose frequencies are
over 0 (all of them, 100%), over 1 (40%), etc.

5.6 Disambiguation with N-gram models

As an alternative approach to WTD using VSM, we tried WTD using n-gram models. Utilising
n-gram language models (LMs) to rank target contexts is motivated by their widespread use
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Table 5.1: Dictionary growth curve

Freq Entries Percent Freq OOV on Test

0 898,720 100.00% <1 3.86%
1 368,359 40.99% <2 4.88%
2 249,347 27.74% <3 5.57%
3 194,059 21.59% <4 6.11%
4 161,028 17.92% <5 6.56%
5 138,463 15.41% <6 6.97%
6 122,156 13.59% <7 7.33%
7 109,814 12.22% <8 7.65%
8 99,917 11.12% <9 7.95%
9 92,057 10.24% <10 8.23%

in NLP and MT. The advantage of n-gram modelling is its conceptual simplicity and practical
availability: only one model is needed to process all trial and test words once the model is built
and made available.

5.6.1 Method

Adapted to the WTD task, a LM can predict the likelihood of a target context being part of the
language. TC sentences are constructed by combining each TC with every possible translation
of their context. The shortest TC sentence is the TC itself, and if the LM is queried for all TC
candidates, the most frequent would turn out on top. For the English bank, the most likely
German candidate is Bank. The n-gram model should rank TC sentences of the right sense
higher, because co-located phrases like the West Bank and Gaza Strip are reflected in higher
n-gram probabilities of their corresponding TC sentences. This applies when the n-gram model
finds the TC with the content-bearing word in the right place (when word-to-word translation is
correct), unlike for multi-word expressions with different surface forms in German and English.

The LM was built from sentence-separated lemmatised parts of DeWac, a large monolingual
web corpus of German containing over 1,627M tokens Baroni and Kilgarriff (2006). For each
TL context, a huge number of n-grams to query the model were compiled. With a 5-gram
model, a possible 4 words preceding and succeeding the word to be translated could be tested.
The results of various context lengths were kept in a 2-dimensional matrix, where each index
represents words ahead of, and after the TC word. Results from different context lengths are
extracted, until enough TC are found (often 5). If the [-4,1] entry (4 words before, 0 after) is
ranked highest, the TC represented by these n-grams would be used exclusively in output, if
the limit was reached. If not, the algorithm moves on to the next matrix entry. Because of the
naïve word-by-word translation, few n-gram candidates of higher order were found. Ranking
by no surrounding context leads to the same answer for all instances of the word, with the
most frequent TL sense first.
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Bank Movement Occupation Passage Plant Mean
5-gram model 25.00 12.92 27.08 14.17 15.42 18.92
3-gram-model 10.00 16.67 24.17 11.67 6.67 13.84
1-gram-model 42.50 5.00 2.50 1.67 3.33 11.00
MostFreqAlignBaseline 6.25 19.17 35.83 15.00 40.00 23.25
MostFreqBaseline 1.25 5.00 2.50 1.67 10.26 4.14

Table 5.2: BestJHG scores for word translation disambigution on CL-WSD trial data with
n-gram langaue models (underlined=above both baselines; bold=highest)

Bank Movement Occupation Passage Plant Mean
MaxScore 95.60 82.62 93.58 89.57 83.22 88.92
5-gram model 31.75 23.01 37.73 15.06 26.55 26.82
3-gram model 27.14 23.01 36.81 17.70 22.16 25.42
1-gram-model 22,92 14.17 24.39 6.63 20.04 17.63
MostFreqAlignBaseline 23.23 20.34 32.78 27.25 21.06 24.93
MostFreqBaseline 31.69 14.17 40.02 6.63 20.04 22.51

Table 5.3: Out-of-five (OOF) scores for word translation disambigution on CL-WSD trial data
with n-gram language models (underlined=above both baselines; bold=highest)

5.6.2 Results

The simple n-gram model was employed in three different orders, uni-, tri- and pentagram
models, but without exploring all possible priorities of context lengths (skewing to before- or
after context). Results in terms of the BestJHG are listed in Table 5.2. On average the higher-
order models perform better. The 5-gram model beats the most frequent translation baseline,
but with the exception of bank none of the models surpasses the harder most frequently aligned
baseline. Results in terms of the Out-of-five scores are listed in Table 5.3. Again higher order
models perform better on average. The 5-gram models outperforms both baselines, except on
passage.

These results suggest that n-gram language models form a viable approach to word transla-
tion disambiguation, outperforming the default strategy of always choosing the most frequent
translation.
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Chapter 6

Modelling with Self-Organising Maps

6.1 Introduction

In the present chapter, the use of Kohonen’s Self-Organising Map (SOM) model in order to
model the TL language is discussed. The aim of the work summarized here has been to employ
the SOM to determine the semantic relevance of a “candidate” translated term with respect to
its context, and thus allow a quantitative comparison among all the available alternatives that
are suggested as candidate translations by a bilingual dictionary. SOM (Kohonen, 1997, 1982) is
a model of artificial neural network that is trained using unsupervised learning to produce a low-
dimensional (usually two-dimensional), discretized representation of the high-dimensional input
space of the training samples. SOM differs from other artificial neural networks in the sense
that during training it uses a neighbourhood function that is gradually reduced in magnitude,
in order to train similarly neighbouring nodes so as preserve the topological properties of the
input space. In the chosen approach, the input set consists of multi-dimensional vectors that
describe the co-occurrences of encountered lemmas with a well-defined class of representative
words. What makes this approach particularly attractive in the context of PreseMT is that
in order to model a monolingual corpus it does not require any external knowledge resources
besides a large text corpus, the modeling process is fully unsupervised in the creation of the map
and that most of the processing is performed off-line. During the actual machine translation
process, when this modeling is employed for disambiguation, only the final SOM-generated
mapping of words onto the map lattice needs to be accessed. This mapping is small in terms
of memory required and can thus be processed very quickly and efficiently.

6.2 Main characteristics of the SOM Model

Self-organizing maps learn to classify input vectors according to their similarity in the pattern
space. Thus, self-organizing maps learn both the distribution and topology of the input vectors
they are trained on. During training the neuron in the layer that is located closest to an input
vectors is selected to adjust its weight vector toward those input vectors. Specifically, the
network first identifies the winning neuron (or alternatively Best Matching Unit or BMU) for
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each input vector. Then, each weight vector moves to the average position of all of the input
vectors for which it is a winner or for which it is in the neighbourhood of a winner. The distance
that defines the size of the neighbourhood is altered during training through two phases, the
first corresponding to the rough training and the second to the fine-tuning step. During rough
training, the input patterns are ordered relative to one another while in the fine-tuning phase
the weight vector of each node is fine-tuned to specific patterns.

The neurons in the SOM output layer are arranged in the form of a lattice with either square
or hexagonal topologies. In the work summarized here, a hexagonal topology has been used.
A new implementation for constructing SOM was developed at ILSP from scratch in Java for
the purposes of the PreseMT project. The main reasons for this re-implementation were to
employ a common programming language to the rest of the PreseMT architecture and to be
able to optimize the performance of the map creation.

6.3 Datasets

The popularity of SOM in terms of numerous, diverse applications is due to its flexibility and
efficiency in unsupervised clustering tasks. SOM has been adopted for a variety of experiments
involving symbolic datasets. The novelty of the SOM application in the PreseMT project
focuses on how it is integrated into a system for machine translation, with emphasis on the
task of word translation disambiguation. In this respect, the features used to map the linguis-
tic data to SOM are of particular importance. In the context of language processing, word
co-occurrence frequencies at a sentence level have been proposed and the features chosen are
frequencies of occurrence of words within the sentences. However, when large document col-
lections are processed in real-world applications, it is virtually impossible to take into account
the frequencies of all words in all documents and still process the entire document collection,
the limiting factors being both CPU time and memory resources. Consequently, several ap-
proaches have been proposed in literature to reduce the number of features, the most common
ones being random projection (Kaski, 1998) of the frequency matrix to lower dimension and
latent semantic analysis (Deerwester et al., 1990).

6.3.1 Feature extraction

As discussed in Section 4.1, the basic assumption made is that words that occur frequently in
similar contexts in natural-language expressions will bear related meanings. More specifically,
the contexts considered here are sentences, i.e., text windows from one full stop to the next
one. The use of such text windows is based on the hypothesis that the full stop between
sentences is the least ambiguous point at which the description of an idea is completed. This
basic hypothesis is frequently made in experiments involving word clustering. Ideally, for each
lemma, the co-occurrences with all other lemmas would be recorded, although at the cost of
a high feature-vector dimensionality. To limit this dimensionality, only a subset of available
lemmas was chosen as the feature set, so that every lemma would be described by its co-
occurrences with the lemmas from the feature set.
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Pareto’s principle, also known as the 80-20 rule (Cam and Gilles, 2002) states that 20% of the
causes are responsible for 80% of results. Pareto’s principle, which is used in the ABC analysis,
has mostly been applied to quality control and management tasks. According to the ABC
analysis, a portion of the causes is characterized as A, which indicates very important events,
with B and C corresponding to less important and to unimportant events, respectively. In the
word disambiguation application, category A contains highly frequent lemmas (corresponding
to stop-words, such as articles, conjunctions, and auxiliary verbs, as well as other frequent
words), B contains relatively frequent lemmas, and C contains rare lemmas. Lemmas from
category B are selected for the feature set, since these lemmas do not correspond to very
common words (that do not reflect a specialized content) yet are frequent enough to describe all
remaining lemmas. Initial limits of the ABC analysis are set to implement an appropriate split
of the input data in terms of frequency. For instance, in document organisation applications
on the basis of content (Tsimboukakis and Tambouratzis, 2011), the following categories were
used.

• Category A contains the most-frequent lemmas that collectively amount to 70% of all
occurrences.

• Category B contains lemmas that contribute the next 15% (from 70% to 85%) of all
occurrences.

• Category C contains lemmas that correspond to the remaining 15% of occurrences. In
addition, to avoid studying exceptionally rare tokens, lemmas that occur less than three
times throughout the corpus are omitted.

The co-occurrences of these lemmas with respect to the B lemmas are employed to represent
the co-occurrence of words in terms of a numeric vector. More specifically, each lemma from
categories A and C is represented by a vector ofm elements, each of which indicates the number
of times the given lemma co-occurs with the corresponding B lemma.

In order to implement the ABC analysis, initially each lemma’s occurrences in the document set
are counted. Then, the lemmas are ranked in descending order of frequency. Then category A is
created iteratively, by introducing the most-frequent lemma in category A without substitution
until the sum of normalized frequencies reaches the threshold of category A. When the sum
ranges between thresholds A and B, the corresponding lemmas are assigned to category B and
the rest are assigned to category C.

An intuitive representation of this procedure is illustrated in Figure 6.1 where category A is
represented by the lemmas that are highly ranked due to their high frequency and thus have
no value in computing co-occurrences in terms of these words. These are the lemmas which
are ranked higher than the point that corresponds to the intersection of the blue and the green
line in Figure 6.1. Next, category B is represented by the middle-frequency words which are
useful in terms of both accuracy and coverage. Last, category C contains the rare words which
are not useful for the feature vector due to their very infrequent occurrence.
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Figure 6.1: Computing the appropriate feature-vector

6.3.2 Corpora

For the purposes of the task of Word Translation Disambiguation, the monolingual corpora
which were produced by Masaryk University through web-crawling were used in order to train
the SOMs (more information on the corpus creation is provided in PreseMT Deliverable
3.2.1). In the development of the language model we used subsets of the two large mono-lingual
corpora of the PreseMT target languages, namely German (17GB) and English (33GB).

The SOM models were constructed using the techniques described in the previous sections
and parts of the aforementioned data-sets which however never exceeded the size of 1GB. The
main reason behind this limitation is the amount of memory that is reserved for computing
co-occurrence matrices exceeds commodity hardware specifications by large. Moreover, pro-
cessing huge corpora has a huge impact on CPU time. For instance, one pass over all input
vectors (approximately 0.9GB) during training requires approximately 16 hours for a HP Z800
workstation with 2 quad-core Intel 5585 processors running at 3GHz with 24 GB of memory.

Furthermore, Figures 6.2 and 6.3 indicate how feature-vector and lemma-set cardinality scale
over the corpus size. Apparently, they both show a sub-linear behaviour. In order to process
the largest possible subset of corpora, it was essential to reduce the size of class B of the
ABC analysis. In the present application, to process a total of 900 documents in the German
language each of 1 GB, class B was defined by limits of 80% and 82%, i.e., much narrower than
those employed by Tsimboukakis and Tambouratzis (2011). In that way, the total number of
lemmas used as features was equal to approximately 1,000 lemmas (as an indication, the number
of lemmas within class B for limits of 80 and 85% was more than 2,500 lemmas, which was
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Figure 6.2: Feature-vector over corpus size

beyond the processing capabilities of the aforementioned workstation). Details on countering
the implementation limitations are provided in the final section of the present chapter.

6.4 The disambiguation process

Once the aforementioned language model is available, we use our own adaptation of the well-
known Viterbi algorithm for the translation equivalent selection module, in order to empower
the overall optimal phrase selection efficiently. This task consists in picking one lemma from
each set and that way disambiguating multiple translations of single- or multi-words units.
Hence, for the purposes of the Translation Equivalent Selection (TES) process, namely the
part where disambiguation takes place and the correct translation alternatives are picked, we
had to come to terms with the increased perplexity of alternative phrases in the target language,
caused by the numerous combinations of equivalent terms, suggested by the Phrase Aligner
Module (PAM).

To elaborate, for the i-th alternative term of the phrase in the target language, we compute
the transition cost from all the previous possible word forms. We also consider recursively
the cost of selecting those forms given previous transitions. Then, from all j different word
forms that lead to the i-th term at the k-th position of the phrase, we set cost(k, i) equal to
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Figure 6.3: Lemmas over Corpus Size

minj{distance(n(k, i), n(k− 1, j)) + cost(k− 1, j)}, where the distance signifies the Euclidean
distance of the winner SOM neurons for the corresponding terms. Hence, the optimal path
reaching term i at position k contains the optimal sub-path reaching j, and thus, when se-
lecting the next alternative word-form there is no need to expand and compute any redundant
suboptimal paths from j as they have been pruned beforehand in order to reduce search costs
and overall system response time.

Furthermore, we examined different variations of this approach. The simplest of them tries to
resolve all word disjunctions at sentence level with the aforementioned method (this is hereafter
denoted as ‘sentence’). In addition, a more complex approach that operates in two steps. First,
we resolve the disambiguation task among all heads and functional heads of phrases for the
entire sentence, and after these have been set all tokens within each phrase are examined, while
having the head- and functional head-lemmas fixed form the previous step. This method tries
to express the more global role of heads and f-heads as compared to the more local role of other
words (and is hereafter denoted as ‘FHP’).

The disambiguation process has been integrated into the translation engine of the online Pre-
seMT system. The SOM-based disambiguation module can currently be employed during
Greek-to-English and Greek-to-German translation using the generated SOM models for En-
glish and German respectively.
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Table 6.1: Score table for each disambiguation technique compared to the SemEval baselines

Word Sentence-based Phrase-Head based Baseline

Bank 31.25 31.25 2.49
Movement 30.77 15.00 3.91
Occupation 20.00 20.00 13.45
Passage 15.38 23.08 4.58
Plant 21.43 21.43 11.70

6.5 Experimental evaluation

In order to evaluate our methods we have employed the SemEval platform as described in
Chapter 3. Table 6.1 indicates the performance of each of our techniques in terms of the
corresponding baseline scores as reported by Lefever and Hoste (2010a). Regarding the metrics
used, we use the same evaluation formula as described by McCarthy and Navigli (2007). In
essence, high-scores indicate that the system selected a translation that was also picked by
more human annotators.

Moreover, by examining Figures 6.4 and 6.5 we obtain an overall image on how our disam-
biguation process scales up with regard to the iteration cycles of the SOM learning procedure.
Specifically, in these pictures we show the average score achieved for our translations according
to the SemEval platform. In particular, SemEval examines the translation chosen by the sys-
tem in twenty sentences for five different words, namely bank, movement, occupation, passage,
and plant. Figures 6.6 and 6.7 show separately the score achieved for each of these terms in
isolation. The first 50 iterations constitute the rough training stage, while the remaining 20
iterations correspond to the fine tuning phase of the SOM adaptation process.

The results of Table 6.1 show a substantial improvement of the performance of the implemented
disambiguation system with respect to the baselines. More specifically the score for the words
bank and movement is an order of magnitude larger than the baseline and for the rest of the
words the baseline is two to four times lower. Notably, for all words the SOM-based system
performed better than the SemEval baseline.

Figure 6.4 was created using the SemEval lexicon with words that are not necessarily included
in the map of the SOM. In contrast, Figure 6.5 was created using the intersection of PreseMT
and SemEval lexica. In other words, according to this scenario, the system selects only trans-
lations that exist in both dictionaries, the one used within PreseMT and the one available by
SemEval, which can explain the lower variance of the depicted curves compared to Figure 6.4.

On the other hand, Figures 6.4, 6.5, 6.6 and 6.7 imply a non-negative trend of the performance
of the SOM-based disambiguator as a function of the number of iterations during training. It
is therefore expected that the figures of Table 6.1 will be further improved as the number of
iterations increases and SOM reaches an optimal state. It is worth noting that the processing
time required to complete one iteration is still high and experimentation with respect to this
parameter is consequently time-consuming.
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Figure 6.4: SOM results using the intersection of the PreseMT and SemEval lexicon

Furthermore, our SOM-based approach is extremely efficient in terms of CPU-time and memory
requirements with respect to the on-line processing. Specifically, the final map which we
constructed from a German corpus of approximately 1GB size requires just 18MB of memory.
On the other hand, the corresponding German-English dictionary that is used in order to
retrieve all possible candidates of each word occupies 136MB of storage. Tables 6.2 and6.3
provide a thorough look on the performance of the SOM disambiguation method in terms of
how much time was spent in the CPU selecting the optimum sequence of translation candidates
within a phrase or a sentence, and the time spent to retrieve all these possible candidates from
the dictionary. The experiments were run on a standard personal computer. Each row in
Table 6.2 corresponds to the total time that was required in order to look up each word from
20 distinct sentences and store them in the appropriate vector elements that represent each
structure, either sentences, or phrases, as denoted for each column. Once this information
is available we are in a position to efficiently resolve disjunctions for each of our methods.
Table 6.3 presents an analytical view of how much time is consumed in this process. Apparently,
it is more costly to retrieve all possible translation candidates from the dictionary, rather than
to select the optimum sequence of them within a phrase or a sentence. Naturally, the results in
Table 6.3 are strongly affected by the number of stored translations for each searched lemma.

As an example, the output of the SOM-based system for an indicative sentence from the
SemEval is presented. The sentence in the source language, namely English, is the following:
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Figure 6.5: SOM results using the PreseMT lexicon

Table 6.2: CPU time (msec) for resolving disjunctions for the SemEval case study

Sentences FHP

Bank 132 116
Movement 38 53
Occupation 44 85
Passage 57 112
Plant 43 36

All (total) 314 402
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Figure 6.6: SOM results for sentence level disambiguation using the SemEval lexicon

Table 6.3: Time (msec) for retrieving all candidates from the German-English Dictionary for
the SemEval case study

Sentences FHP

Bank 378 313
Movement 275 261
Occupation 402 422
Passage 232 237
Plant 5078 5013

All (total) 6365 46246
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Figure 6.7: SOM results for FHP-based disambiguation using the intersection of the PreseMT
and SemEval lexicon

The BIS could conclude stand-by credit agreements with the creditor
countries’ central banks if they should so request.

Next, the framework can derive the following translations (consisting of lemmas exclusively),
depending on the target language and the methods selected. At sentence-level disambiguation,
the following output is obtained for the previous sentence:

der BIS können ableiten Leistungsbereitschaft Entlastung Abmachung bei der
Gläubiger Staat mittig Bank ob sie sollen also Abrufen.

On the other hand, for the FHP-based disambiguation, a different optimal results is obtained,
namely:

der BIS können zu einem Entschlußkommen Alarmbereitschaft Akkreditiv
übereinstimmung bei der Gläubiger Staat Zentrale Bank sie sollen also
fragen nach.
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6.6 Future work

There have been two limitations in the effort to process larger monolingual corpora. The
first one involves the processing of larger sizes of feature vectors. To achieve that, a possible
modification has been identified, to retain for each lemma to be placed in the map only the
most important features rather than all features of the feature vector.

The second improvement concerns the ability to train maps more quickly. To that end, and to
make use of multi-processor hardware, the existing Java implementation of the SOM training
process has been parallelised using Java threads. This new implementation exploits semaphores
and mutex locks for synchronization among multiple process threads. It is expected that by
porting the SOM training process to all 4 cores of a quad-core CPU such as one single CPU
of the aforementioned Z800 workstation, a reduction of the processing time of 50% will be
achieved in comparison to the processing time on a single core of the same machine. Figure
6.8 illustrates the gain achieved while launching our multi-threaded implementation for SOM
training over a small German corpus of 12MB. There is a substantial gain for just a few
additional threads. However, the impact of parallelism diminishes for a higher number of
threads due to the synchronization cost between them. In practice, at each iteration, a stage
of parallelism is succeeded in turn by a stage of synchronization. Therefore, the more threads
there are, the more time the synchronization stage requires compared to the time consumed
by the multiple threads. Consequently, beyond some point there is no significant improvement
from parallelism. Extensive experiments with this new version of the SOM will be performed
in the 3rd year of the project and reported in the relevant deliverables.
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Figure 6.8: Processing time required to perform a complete training iteration for the SOM
training process over a small German corpus, as a function of the number of threads used for
(a) the rough-training and (b) the fine-tuning stage
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Chapter 7

VSM-based disambiguation in the
PreseMT MT system

The VSM models for WTD described in Chapter 4 showed potential to improve the transla-
tion quality of an MT system. On average, scores were above the simple baseline of choosing
the most frequent translation, which is a reasonable baseline in the context of the PreseMT
MT system, where no parallel text is available. Some models even outperformed the more
challenging baseline of taking the most frequently aligned translation in a parallel text corpus.
For this reason, it was was deemed worthwhile to scale up to VSM-based approach to WTD
and implement it in the PreseMT system. Whereas the models in in Chapter 4 were lim-
ited in that they only targeted nouns present in the Semeval CL-WSD data set for English to
German translation, the models described in this chapter cover the most common word trans-
lation ambiguities occurring in the bilingual lexica for all translation pairs targeted within the
PreseMT projcet.

The corpus modelling module for WTD comprises two parts. The first is an off-line processing
step in which translation ambiguities in the lexicon are identified, context samples from a target
language corpus are collected and VSM models are constructed. This is described in Section 7.1
below. The second is the WTD module that is part of the on-line PreseMT system. It
employs the models from the previous step to perform disambiguation in cooperation with the
Translation Equivalent Selection module. This is addressed in Section 7.2. Finally, directions
for future work are discussed in Section 7.3.

7.1 Off-line processing

7.1.1 Context sampling

Context sampling is the off-line process of collecting usage samples for all target language words
involved in word translation ambiguities in the lexicon. Input to the sampling process consists
of a translation lexicon (in the PreseMT XML format) and an indexed monoligual corpora
for source and target language. The process proceeds as follows.
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Step 1: Counting
Two types of counting are performed on the monolingual corpora for source and target language.
The first type is a count of all lemmas occurring in the corpus. The second type is a count of
all lempos instances in the corpus, where lempos is a combination of the lemma and a coarse-
grained POS tag such as n (noun) or v (verb). Counting is performed using the Manatee corpus
management tool provided by LCL/MU, which also forms the backend of the SketchEngine.

Step 2: Finding translation ambiguities
The bilingual lexicon is searched for translation ambiguity, that is, source language entries
which have at least two possible translations. Once these ambiguities have been identified, we
can retrieve samples for the target words from a target language corpus and use these to build
word translation disambiguators. To focus our efforts on translation ambiguities most likely to
occur during translation, frequency-based filtering is applied. Disambiguation is not worth the
effort for source words that are very infrequent, so those with a count below a certain threshold
are disregarded. The exact threshold value depends on the size of the monolingal corpus, but
defaults to 10k. In a similar fashion, disambiguation is unlikely to succeed for very infrequent
translations, because not enough usage samples can be found in the target language corpus.
Target language translations below a certain threshold (default 10k) are therefore disregarded.
This filtering requires counts from the source and target corpora, both for bare lemma and
lempos, from the Step 1. In addition, there are options to ignore the POS tags of multi-word
expressions (MWE) or skip MWEs altogether.

Step 3: Creating a vocabulary
In order to store context samples for a translation in an efficient way, instead of storing the
context lemmas themselves, their unique numerical identifiers are stored. This vectorization
requires a vocabulary mapping lemmas to IDs. The basis for the vocubulary is a list of target
language lemma counts from Step 2. Lemmas below a certain frequency cut-off are remove,
with a default of 100. In addition, stopwords are removed and remaining garbage is removed
using regular expression filters. All these steps are target language specific. This results in
rather large vocabularies, but this is only for the purpose of context sampling; vocabularies are
further reduced during model creation.

Step 4: Retrieving samples
For each possible translation identified in Step 2, samples of its usage are retrieved from the
target language corpus. Samples consist of full sentences containing the target language lemma.
The lemmas in the context samples are encoded using the vocabulary from Step 3. Very short
samples (by default less than five tokens) or very long (by default more than 100 tokens) are
removed. Care is also take to avoid sampling duplicate sentences. The maximum number of
samples per translation candidate defaults to 10k. Encoded samples for each translation are
stored as a sparse matrix in the Matrix Market format, a standard file format for exchanging
matrices.1.

1http://math.nist.gov/MatrixMarket/formats.html
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7.1.2 Model construction

After sampling the resulting data is collected and processed into vector space models. Models
are generated for each pair of source and target languages since each model induces the rela-
tionship between candidate translations in the target language and a particular source language
lemma. The model building consists of five steps:

Step 1: Vocabulary pruning
The vocabulary of target language lemmas from the earlier sampling step is pruned in order to
reduce the space and processing requirements of the model. The mapping in the vocabulary
between context lemmas and matrix column indices is modified to account for the removed
vocabulary items.

The vocabulary is currently reduced to correspond with the target language lemmas present
in the translation dictionary. The reason for this is that lemmas not present in the translation
dictionary can never appear in translations produced by the system. Other more sophisticated
pruning approaches have been explored that can reduce the model size substantially, and may
be incorporated in the future. The table of translation ambiguity constructed during sampling
and used for model construction must also be pruned at this stage in order to exclude unneeded
information.

Step 2: Determining the models required
The table of ambiguities as derived from the translation dictionary is used to construct a list
of lemma and POS combinations in the source language. Each lemma in this list is followed by
its associated translation candidates in the target language which are also lemma/POS combi-
nations. The list of source lemma/POS combinations constitutes the set of models necessary
for the language pair, and the content of each model is specified by its set of target language
translation candidates.

Step 3: Collecting sparse matrices
The actual vectorized contexts for these target language candidates are retrieved from the
samples. The context matrices are read from and processed in a sparse format for efficient
processing. Internal processing is done with Compressed Sparse Row (CSR) format matrices,
while the resulting model files are stored in Coordinate list (COO) format conforming to the
Matrix Market specification.

Step: Summing vectors
The sets of context vectors representing a single target candidate are then subjected to trans-
formation that intends to extract a low number of prototypes representing different semantic
meanings of the target language candidate. Currently the centroids of the sample context
vectors are used, creating a single prototype vector for each candidate word translation. This
corresponds to the SumModel from Chapter 4.
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Step 5: Constructing VSMs
The fifth and final step is to combine these prototype vectors into a single model matrix. These
matrices, along with various mappings from terms to matrix indices needed during decoding
are stored in a directory structure representing the complete model.

The reduction of sample contexts to prototype vector representations is currently simplified to
producing the single centroid over all the sampled contexts. It is plausible that using more
than one prototype representation would increase the performance of the system, and such
approaches have been explored to some extent. Chapter 4 details the challenges in extracting
multiple prototypes for the sentence context data.

Along with the model matrices, the model stores mappings from the model prototype con-
texts to the target lemma/POS tag combination, mappings from source language lemma/POS
combination to the context matrices and the target language term vocabulary which is used
to build the context vectors for the sentences that are passed to the Translation Equivalent
Selection Module. In addition a set of meta data is stored for each model matrix containing
the size and density of the matrices.

7.2 Corpus modelling module in the online system

The Corpus Modelling Module is used by the translation system through the Translation Equiv-
alent Selection Module. The Corpus Modelling Module integrates two corpus based models that
are generated off-line: Local word order and word translation selection modelled with n-gram
based language modelling, and word translation selection modelled using vector space models
of sentence level lexical semantics. These are combined in a probabilistic model ranking the
various combinations of sentence structure and individual word translations. Viterbi decoding
is used to identify the most probable translation given the output of the earlier modules by
decoding the graph of possible translation candidates using the n-gram transition probabilities
and weighting the translation candidate words with probabilities provided by the vector space
model.

Both models are integrated with the PreseMT prototype through the addition of components
embedded in the Translation Equivalent Selection Module, which is responsible for the Viterbi
decoding strategy and retrieving the necessary probability scores. Separate components are
used to fetch or calculate the word transition probabilities and sentence global translation
candidate probabilities during the decoding process. The vector space model is implemented in
the WSMScorer class which calculates similarity scores between the current sentence context
and the vectors in the model corresponding to target candidates. This class constructs the
context vector for the current candidate sentence, and then retrieves the models for any word
with an ambiguous set of translation candidates. For each model the cosine similarities between
the context vector and the prototype vectors are calculated, and the highest similarity for each
distinct candidate is used as the probability weight for this candidate. For each source word
the probability weights of the candidates are normalized such that the total weight of the
candidates sum to one. In this process the individual model matrices are read in as needed
and subsequently discarded to minimize memory usage. The component operates directly on
the data structures containing the partially translated sentences, decorating them with Word
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Translation Disambiguation (WTD) probabilities. They are then directly available during the
Viterbi decoding. The n-gram transition probabilities are directly read from stored models and
are retrieved through lookup from an in-memory representation.

7.3 Future work

As for all other modules, the contribution of the WTD module to the translation quality of
the overall PreseMT MT system for several language pairs needs to be evaluated. This is
on-going work, but at the time of writing, the evaluation results are not yet available.

A major concern for the vector space models is model size, and several approaches have been
explored in order to find size-reduced but still models. For reduction of context vocabulary
size, we have explored several methods based on the notion of variance in data (i.e., Principal
Component Analysis, PCA; Latent Direchlet Allocation, LDA; and TF-IDF) and other based
on frequency (ABC filtering with lower and upper frequency thresholds for inclusion). However,
until now it has been hard to judge the impact of the dimensionality reduction techniques
without the context of the complete translation system. Hence the simpler methods have been
included in the prototype at this stage.

The construction of a meaningful set of context prototypes through clustering of sample con-
texts has proven difficult due to the nature of the sentence level context data. This data
is extremely sparse and sentences share very few context features. Clustering methods that
are effective in clustering document collections have not been effective in clustering this data.
Developing a method of extracting meaningful prototypes for this data have the potential to
increase the effectiveness of the model.

Another direction open for exploration is multi-word expressions (MWE). Some of the Pre-
seMT translation dictionaries contain many MWE entries. These are so far ignored during
translation disambiguation because they are hard to handle with the Viterbi decoder. However,
the VSM-based approach to disambiguation can easily be extended to MWEs by just collecting
samples and building models for target language MWEs.
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Chapter 8

Future work

The framework developed for investigating the task of Word Translation Disambiguation
(WTD) in the PreseMT Corpus Modelling Module lends itself to fruitful extension in a
number of different ways, including to use more data or look at the test data in alternative
ways, ways to either extend the vector space approach to semantic similarity modelling or to
replace it with alternative approaches, and ways to move on to the task of full word translation.
These possible extensions are detailed in the following sections.

8.1 Data and evaluation

A straight-forward way to extend the present work would be to use more SemEval data. The
CL-WSD task offers data sets for other language pairs besides German, namely Dutch, French,
Spanish, Italian. Evaluating our WTD approach on English-Italian data makes particular sense
as Italian is one of the target languages in the project. This work would be carried out during
the project’s final year, within WP9, as Task 9.3, “Extension to other language pairs”.

Furthermore, evaluation could be reconsidered. As discussed, we identified a number of prob-
lems with the Best and out-of-five evaluation measures adopted from the CL-WSD and CL-LS
tasks. We attempted to address some of these, e.g., the deficiency in mode scoring, by propos-
ing alternatives. However, these measures still remain somewhat hard to grasp intuitively due
to their complicated nature, and developing more solidly grounded evaluation measures will
certainly contribute to better evaluations.

Even though the CL-WSD and CL-LS have proven to be most useful for studying word trans-
lation and disambiguation approaches, they may in the end not be fully representative for the
task of word translation in an actual MT environment. For example, the CL-WSD gold stan-
dard contains some rather EuroParl-specific translations and the way translation of compounds
is handled is questionable. The future will hopefully bring new data sets tailored to evaluating
the PreseMT MT system.
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8.2 Extending vector space modelling

There are many opportunities to improve on the current vector space models. There is a wide
range of alternative similarity/distance measures to cosine similarity, such as Dice coefficient,
Jacquard coefficient, City block distance, and Euclidan distance. The context window currently
used for co-occurrence counts defaults to a single sentence, but smaller and/or fixed sized
windows may work better. Further, there are strong suggestions in the literature that raw
co-occurrence counts in the matrix do not work nearly as well as more abstract measures
of cohesion such as Pointwise Mutual Information or the T-test statistic. Combinations of
TF*IDF with other corpus transformations have so far not been tried, nor the effect of the
number of dimensions on the RP and LSI transformations. We have also started working
on transformations that implement more class-directed methods of feature weighting such as
Information and Gain Ratio.

Yet another direction is to explore combinations of the Vector Space Model approach discussed
in Chapter 4 either with the unsupervised Self-Organising Maps of Chapter 6 and/or the more
conventional n-gram approach to language modelling discussed in Chapter 5. In particular,
as our VSM works with contexts much wider than n-gram models, it can model long distance
relations between a translation candidate and a discriminative word in its context. In contrast,
n-gram models are good at capturing local relations such as word order and collocations. A
combination of both may therefore be beneficial.

8.3 Alternative semantic similarity modelling

Vector space modelling and Self-Organising Maps for determining similarity in contexts are
attractive because they do not require any external knowledge resources besides a large mono-
lingual corpus. Still, alternative approaches could be investigated, for example, Memory-Based
Learning (MBL). MBL is a supervised machine learning approach which has its roots in nearest
neighbour classification (Daelemans, 1999; Daelemans and van den Bosch, 2005). It is based
on the idea that direct re-use of examples using analogical reasoning is better for solving NLP
problems than the application of (manually) rules extracted from those samples. Memory-based
learning has been repeatedly applied to Word Sense Disambiguation (e.g., Veenstra et al., 2000)
— a task closely related to Word Translation Disambiguation — and is consistently among the
best performing approaches to supervised word sense disambiguation (Navigli, 2009). The key
difference to other machine learning approaches is that MBL is a form of lazy learning which
refrains from abstraction. This makes it particularly suitable for tasks for which the amount
of training data is limited. Moreover, it does not abstract away from low-frequency exceptions
typically occurring in natural language.

The MBL system participating in the SemEval CL-WSD task (the UvT system) obtained
the highest score for the two languages (Dutch and Spanish) it targeted (van Gompel, 2010).
The core of the system consists of so-called word experts, one per source word, which are
memory-based classifiers trained to predict the correct target word translation on the basis
of a range of local and global features such as word, lemma and POS features. Although
the training material in the original approach was derived from parallel corpora, essentially the
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same approach can be applied to our setting by extracting training instances from a monolingual
corpus in combination with a dictionary.

However, initial experiments on applying MBL within PreseMT have so far been discouraging,
with the memory requirements being too large and the processing too slow to make it a realistic
option.

8.4 Full word translation

So far we have restricted ourselves to disambiguation of a given set of translation candidates.
Future work may extend the task to full word translation, that is, including the initial step
of collecting a set of translation candidates. Trivially translation candidates can be retrieved
from a dictionary, but as no dictionary has complete coverage, inevitable there will be words
for which translation candidates have to be constructed in some other way. This may include
morphological processing such as inflection and compounding. The vector space modelling
approach also offers an interesting alternative: candidate translations can be retrieved from a
generic VSM over all tokens encountered in a huge monolingual corpus. This is closely related
to the idea of bootstrapping a translation lexicon using a VSM (Rapp, 1999).

Another aspect which has so far been neglected here is that the choice of a particular word
translation is likely to depend on other nearby word translations. However, since each word in
a sentence may have multiple likely translations, choosing the best word translations becomes a
global optimization problem similar to finding the best sequence of words through a word lattice
in automatic speech recognition. One interesting direction in this respect is application of Game
Theory for finding an optimal solution, as mentioned in the Section on Corpus Modelling in
the PreseMT “Description of Work” (Annex I to the PreseMT Grant Agreement).
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