

D3.1.3: CORPUS CREATION & ANNOTATION MODULE (VER.3)

Grant Agreement number ICT-248307

Project acronym PRESEMT

Project title Pattern REcognition-based Statistically Enhanced MT

Funding Scheme Small or medium-scale focused research project – STREP – CP-FP-INFSO

Deliverable title D3.1.3: Corpus creation & annotation module (ver.3)

Version 3

Responsible partner MU

Dissemination level Public

Due delivery date 31.12.2011 (+60 days)

Actual delivery date 16.1.2012

Project coordinator name & title Dr. George Tambouratzis

Project coordinator organisation Institute for Language and Speech Processing / RC ‘Athena’

Tel +30 210 6875411

Fax +30 210 6854270

E-mail giorg_t@ilsp.gr

Project website address www.presemt.eu

PRESEMT – D3.1.3: Corpus creation & annotation module (ver.3)

Page 2 of 21

Contents

1. EXECUTIVE SUMMARY ... 3

2. INTRODUCTION .. 4

3. WEB CRAWLING ... 5

3.1 WEB CRAWLING FOR PRESEMT .. 5

4. CHARACTER ENCODING DETECTION... 6

5. BOILERPLATE REMOVAL.. 9

5.1 PAGE-LEVEL AND SITE-LEVEL METHODS ...10
5.1.1 Segmentation ...10
5.1.2 Classification...10

5.2 THE PRESEMT SOLUTION: JUSTEXT.. 11

6. DE-DUPLICATION ... 13

6.1 BRODER’S SHINGLING ALGORITHM...14
6.2 MAKING USE OF DUPLICATE N-GRAMS ..14

6.2.1 Finding duplicate n-grams with a suffix array .. 15
6.3 REMOVING DUPLICATE TEXT BLOCKS ..16

7. THE PRESEMT MONOLINGUAL CORPORA... 17

7.1 CORPUS ANNOTATION..18

8. THE PRESEMT BILINGUAL CORPORA...19

8.1 CZECH-SL CORPORA (MU)...19
8.2 GERMAN-SL CORPORA (GFAI) .. 20
8.3 GREEK-SL CORPORA (ILSP) .. 20
8.4 NORWEGIAN-SL CORPORA (NTNU) ... 20

9. REFERENCES ..21

Tables

TABLE 1: RESULTS OF THE 5-FOLD CROSS-VALIDATION ...8

TABLE 2: STATISTICAL DATA ON PRESEMT MONOLINGUAL CORPORA ...17

TABLE 3: PRESEMT BILINGUAL CORPORA ...19

PRESEMT – D3.1.3: Corpus creation & annotation module (ver.3)

Page 3 of 21

1. Executive Summary

The present deliverable falls within Tasks T3.1: Mining the web for collecting resources and T3.2: corpus
creation, analysis and annotation of WP3: Corpus extraction & processing algorithms. The work de-
scribed concerns the compilation of huge monolingual corpora and of small bilingual ones, both of
which will be utilised by the Main translation engine of the PRESEMT system. Details are also given on
how these resources are processed and annotated.

The monolingual corpora are automatically created by crawling the web, a nowadays popular source of
text data for multiple purposes. The automation of this procedure, however, calls for additional proc-
essing of the material collected, so as (a) to detect the original character encoding of each document
and convert it to Unicode, (b) to identify and isolate non-textual data (called ‘boilerplate’) and (c) to
remove duplicate occurrences of content (‘de-duplication’). The current deliverable discusses various
methods for boilerplate removal and de-duplication and describes the methodology applied in the case
of PRESEMT. The compiled monolingual corpora are utilised during the translation process for disam-
biguating translation equivalents. The following software used for processing the corpus data has been
released as open source (under the new BSD license):

∗∗∗∗ chared [http://code.google.com/p/chared/]: character encoding detection tool

∗∗∗∗ jusText [http://code.google.com/p/justext/]: boilerplate removal tool

∗∗∗∗ onion [http://code.google.com/p/onion/]: tool for detecting and removing duplicate content

The bilingual corpora are manually created, mainly from web content, and are of a small size. It has
been foreseen to compile 13 such corpora, which cover the project language pairs to be evaluated
within PRESEMT. These resources will be utilised by the Phrase aligner module in order to create phras-
ing models and be accessed during the translation process for establishing the optimal sentence struc-
ture of a given SL text input for translation.

The deliverable has the following structure: Section 2 introduces the issue of using web as a text re-
source and the accompanying problems and Section 3 describes the method of web crawling for gather-
ing large text resource over the web. Sections 4 and 5 present various methodologies for cleaning the
web material collected (i.e. indentifying the ‘good content’) and removing the duplicate content re-
spectively. Section 6 provides statistical data on the monolingual corpora collected so far for the pur-
poses of the project, while Section 7 is dedicated to the bilingual corpora. References listed in Section 8
conclude the current deliverable.

PRESEMT – D3.1.3: Corpus creation & annotation module (ver.3)

Page 4 of 21

2. Introduction

In recent years, the web has become a popular source of textual data for linguistic research. The web
provides an extremely large volume of texts in many languages. However, a number of problems have
to be resolved in order to create collections (text corpora) which are appropriate for application in
natural language processing. In this work package, we first describe how we crawl the web, and then
two related problems are addressed: cleaning away ‘boilerplate’ and removing duplicate and near-
duplicate content.

On most web pages, the main content is accompanied by so-called boilerplate content, such as naviga-
tion links, advertisements, headers and footers. Including the boilerplate content in text corpora results
in an undesirable over-representation of some common boilerplate words and phrases such as “home”,
“search”, “print”, etc. We have developed a novel heuristic-based approach to solve the problem.

Many texts on the web exist in multiple instances (e.g. mirrored websites, document revisions, quota-
tions in discussion forums, etc). Duplicate data distorts corpus statistics and causes difficulties to users
who search for linguistic data in web corpora. Many researchers have addressed the problem of identi-
fying duplicate and near-duplicate web pages in the context of web search engines. However, the prob-
lem is typically limited to identifying almost identical documents. Pairs of web pages which contain sig-
nificant amounts of both identical and different content are not considered near-duplicates by search
engines. For text corpora, on the other hand, any duplicated data constitutes a problem.

Another resource required for PRESEMT is a small parallel corpus which can be used to model the struc-
tural mappings between the two languages.

In this report we first describe the methodology for collecting very large web corpora, including innova-
tive techniques for boilerplate-removal and de-duplication (see Pomikálek 2011). Next, the process of
compiling bilingual corpora is presented.

PRESEMT – D3.1.3: Corpus creation & annotation module (ver.3)

Page 5 of 21

3. Web crawling

Building web corpora of over one billion words requires downloading millions of web pages. This is typi-
cally achieved by web crawling. Specialised software (a web crawler, also just crawler or a spider) is
used to “crawl” over web pages by simulating clicking on the hypertext links. All the visited pages are
downloaded. While web crawling is straightforward in principle, a fast and robust web crawler capable
of handling terrabyte downloads is not easy to implement. Though many open source web crawlers ex-
ist, the production-ready ones are fairly rare. A popular choice in the web-as-corpus community is the
Heritrix crawler developed by Internet Archive1.

For performing a web crawl, a list of starting URLs is required. These can be obtained from search en-
gines using the techniques described above. One of the essential requirements on web crawling for
corpora is that mostly the web pages containing the texts in the language of interest are downloaded.
The most straightforward way to achieve this is by making the crawler stick to the first level domains of
the countries where the language is prevalently used (e.g. .de and .at for German). In general, it is a
good idea to employ further filtering based on content-type (e.g. only HTML pages), size (very large
files usually do not contain useful data), etc.

Once the data is downloaded, it has to be converted to plain text and cleaned of boilerplate content. A
language filter (e.g. based on frequencies of character triples) should be applied to weed out pages not
in the language of interest. Duplicate and near-duplicate data need to be removed. The web-crawled
corpora have been pioneered by the WaCky community2 who compiled large web corpora for several
languages (e.g. German, Italian, English, French), each approaching a size of 2 billion words.

3.1 Web crawling for PRESEMT

Crawling for PRESEMT initially used Heritrix, with the settings as explored and set by Marco Baroni and
his colleagues at the University of Bologna for the DeWaC, ItWaC, FrWaC and UKWaC corpora. In the
course of 2011 our own crawler, Spiderling (Suchomel and Pomikalek 2011) was developed. National
domains (e.g. .gr for Greek) were used. Some web pages (for examples those with URLs ending in .jpg,
.avi) were not downloaded on the basis of regular expression filtering of the URLs. Content-type filter-
ing was also applied, based on the file header: an HTTP header is retrieved from the server first and the
whole file is downloaded only if the content-type is "text/html". Content-length filtering based on the
HTTP header is also applied. Only files between 5kB and 2MB are downloaded.

1 http://crawler.archive.org/
2 http://wacky.sslmit.unibo.it/doku.php?id=start

PRESEMT – D3.1.3: Corpus creation & annotation module (ver.3)

Page 6 of 21

4. Character encoding detection

Text documents and Web pages in particular use various character encodings, such as iso-8859-1, win-
dows-1251, utf-8, etc. In order to achieve a unified representation of non-ascii characters in a corpus, the
character encoding of each source document has to be detected and converted to a single selected
(unicode) encoding, such as utf-8. Converting a text from a character encoding X into a character en-
coding Y is straightforward. Finding the correct value of X is a challenging task though.

Web pages usually contain the information about the used character encoding in the meta-tags. How-
ever, this information is not always available neither is it always correct, and in general cannot be relied
upon. Nevertheless, the character encoding can usually be reliably guessed from the textual contents of
a Web page.

The problem of character encoding detection can be tackled at two different levels. First, no assump-
tion is made about the language of the input text. In this case both the character encoding and the lan-
guage of the input are guessed at the same time. Second, the language of the input is known and only
the character encoding is detected. Existing systems which fall into the former category include for in-
stance TextCat3. A notable representative of the latter category is Enca4.

The disadvantage of the existing systems is that they support only a limited number of languages and
encodings. The system we designed, on the other hand, covers a wide range of languages and the fre-
quently used encodings for each language. In particular, all the languages relevant for the PRESEMT
project (Czech, English, German, Greek, Italian and Norwegian) are supported.

Our detection system assumes that the language of the input is known. Note that when building mono-
lingual corpora this is always guaranteed.5 Also, by narrowing the problem down to a single language,
higher accuracy can be achieved.

The system works as follows. First, a model is created for each supported language. This requires two
kinds of input:

∗∗∗∗ The list of character encodings used for the given language

∗∗∗∗ A sample text in the language and in a known character encoding

We convert the sample text to all encodings from the list, creating N different files (where N is the
number of encodings). Then, for each of the files we build a frequency list of all consequent triples of
bytes. The N frequency lists (vectors) are then compared and the items (triples) with the same fre-
quency in all the N vectors are discarded.

When detecting a character encoding of a document, its frequency vector is built and a scalar product is
computed with each of the N model vectors. The character encoding associated with the model vector
which produces the highest scalar product is returned as the encoding detected for the input docu-
ment.

The advantage of building model vectors from the same data (only converted to N different encodings)
is that the differences among the model vectors are only where the character encodings differ. If for
instance all N encodings are ascii-compatible, then any triplet of bytes containing only ascii characters
will have the same frequency in all model vectors. Thus, this triplet would add the same value to the sca-
lar product with a tested document (vector) for all models.

3 http://www.let.rug.nl/vannoord/TextCat/
4 http://gitorious.org/enca
5 In fact, in a web corpus processing pipeline, character encoding detection has to be performed before language detection. Thus, the assump-
tion that the input of the character encoding algorithm is in the language in question is not always valid. However, this is not a problem, since
all texts in other languages will be rejected by the language filter in the next step and it therefore doesn’t matter whether their character en-
coding has been detected correctly or not.

PRESEMT – D3.1.3: Corpus creation & annotation module (ver.3)

Page 7 of 21

As such it cannot affect the order of the final scalar products (and the result of the classification) and
thus it can be safely removed from all model vectors. This both reduces the size of the vectors and
speeds up the classification.

Alternative approaches which build the models on N different texts in N different encodings prevent
such pruning. Apart from that, similarity of the tested document to the texts used for training the mod-
els (regardless of their encoding) may bias the results of the encoding detection. This bias would be
more severe the more ascii characters (or more generally, the more characters with the same represen-
tation in all the encodings in question) are used in the training texts (e.g. the bias would be very severe
for English).

The reason for using frequencies of tuples (triplets in our case) of characters rather than single charac-
ters is that some bytes represent multiple different commonly-used characters in different encodings.
Such bytes may cause errors in the encoding detection. This is best illustrated by an example. The byte
a9 represents the character © (copyright symbol) in windows-1250 and the character Š (capital s with
caron) in iso-8859-2. Both encodings are used for the Czech language. The Š character is much more
frequent in Czech texts than the copyright symbol. Thus, a windows-1250 text containing a copyright
symbol may be easily misclassified as iso-8859-2 since the a9 byte will have a higher frequency in the iso-
8859-2 model. Since the two encodings are very similar, this kind of classification error is fairly likely,
especially for short texts.

Building models on tuples of characters rather than on single characters helps to overcome this prob-
lem. The copyright symbol will be typically followed by a space whereas the Š character will be typically
followed by another letter in a Czech text. Therefore, the two bytes a920 (© followed by a space in win-
dows-1250) will certainly have a higher frequency in a windows-1250 model than in an iso-8859-2 model
(for Czech). In our experiments, using triplets of characters resulted in a higher accuracy of the encod-
ing detection than using only pairs of characters.

In order to create models for our system, we collected a set of about 1000 Web pages for each lan-
guage. This was done using the Corpus Factory tools as described in (Kilgarriff et al., 2010). We identi-
fied the encoding of each page by using the information in the meta-tags. Though we are well aware
that this information is not always correct we believe the errors are so rare that they cause only an in-
significant bias in the built models. We simply discarded all pages for which we haven’t been able to de-
termine the character encoding from the meta-tags.

First, for each language, we computed the relative frequencies of the encodings used in the Web pages
and accepted those with a relative frequency above 0.5% as the encodings commonly used for the lan-
guage. We then created a model vector for each of these encodings by converting the Web pages to
the encoding and building the frequency vector as described above.

To evaluate the system, we performed a 5-fold cross-validation on the training data. Table 1 contains the
results for the “PRESEMT languages”.

PRESEMT – D3.1.3: Corpus creation & annotation module (ver.3)

Page 8 of 21

Table 1: Results of the 5-fold cross-validation

 Czech English German Greek Italian Norwegian

 freq accuracy freq accuracy freq accuracy freq accuracy freq accuracy freq accuracy

utf-8 60.2% 100.0% 56.9% 95.8% 54.6% 100.0% 68.5% 100.0% 54.2% 100.0% 63.0% 100.0%

windows-1250 32.2% 100.0% 0.3% n/a 0.1% n/a 0.2% n/a 0.0% n/a 0.1% n/a

windows-1252 0.4% n/a 9.4% 97.5% 6.5% 97.3% 3.1% 75.8% 7.1% 95.7% 7.0% 97.4%

windows-1253 0.0% n/a 0.0% n/a 0.0% n/a 14.3% 99.3% 0.0% n/a 0.0% n/a

iso-8859-1 1.0% 89.5% 32.8% 90.9% 37.1% 85.8% 1.7% 71.2% 37.9% 85.1% 29.3% 88.2%

iso-8859-2 6.0% 99.6% 0.0% n/a 0.1% n/a 0.0% n/a 0.1% n/a 0.1% n/a

iso-8859-7 0.0% n/a 0.0% n/a 0.0% n/a 12.0% 97.2% 0.0% n/a 0.0% n/a

iso-8859-15 0.0% n/a 0.0% n/a 1.2% 85.6% 0.0% n/a 0.0% n/a 0.4% n/a

training docs 801 668 773 879 771 740

w. avg accuracy 99.2% 93.5% 93.7% 97.9% 93.3% 95.7%

Note that the results may be harmed by incorrect “annotation” of the data. We manually inspected
some of the misclassified pages and often found out that the algorithm detected the encoding of the
page correctly, but the character encoding specified in the meta-tags was wrong. We therefore assume
that the actual accuracy of our system is higher than that indicated by the numbers above.

The average accuracy is weighted by the frequency of occurrence of the encodings. The rationale of the
weighting is that it is more important that the algorithm correctly identifies the frequently used encod-
ings than the rarely used ones.

PRESEMT – D3.1.3: Corpus creation & annotation module (ver.3)

Page 9 of 21

5. Boilerplate removal

‘Boilerplate’ is usually defined rather vaguely as non-informative parts outside of the main content of a
web page, typically machine-generated and repeated across the web pages of the same website. While
some elements such as navigation menus or advertisements are easily recognised as boilerplate, for
some other elements it may be difficult to decide whether they are boilerplate or not in the sense of the
previous definition.

Imagine a web page from a news site which, apart from a full text of one article, contains an abstract of
another article with a link to the full text. Does this abstract qualify as boilerplate? Is it informative? Is it
the main content? It turns out that the notion of boilerplate is not easy to define with a single sentence.
In the context of cleaning boilerplate from web pages, the term typically denotes any elements which
constitute noise for the application of the web data. The exact definition is therefore application-
specific.

Two fairly detailed specifications of boilerplate exist, in the form of boilerplate annotation guidelines:
the guidelines for the annotators of the CleanEval competition gold standard6 and the guidelines for
using the KrdWrd annotation tool7.

The CleanEval guidelines instruct to remove boilerplate types such as:

∗∗∗∗ Navigation

∗∗∗∗ Lists of links

∗∗∗∗ Copyright notices

∗∗∗∗ Template materials (e.g. headers and footers)

∗∗∗∗ Advertisements

∗∗∗∗ Web-spam, such as automated postings by spammers

∗∗∗∗ Forms

∗∗∗∗ Duplicate material, such as quotes of the previous posts in a discussion forum.

The KrdWrd guidelines are more recent. They arose from the CleanEval guidelines, but they go one step
further. Only the text made up of complete sentences is taken as the main content here. Elements such
as lists and enumerations are classified as boilerplate unless they contain full sentences.

It is noteworthy that this is a significant difference from CleanEval where the inclusion of list items in
the cleaned data is specifically required. Clearly, the KrdWrd aims to define the boilerplate in a way so
that the remaining content constitutes good corpus data. The texts consisting of complete sentences
are of the highest value for text corpora. Data such as lists or tables, on the other hand, are rather coun-
terproductive for linguistic research. CleanEval's specification of boilerplate is more conservative and
may, for instance, be appropriate for information retrieval, but less so for creating web corpora. As this
work is done in the context of web corpora, KrdWrd's perspective on boilerplate is more relevant. Still,
as the two views overlap to a high extent, the datasets originating from both KrdWrd and CleanEval are
used for our experiments. The results on KrdWrd's Canola dataset are considered more important
though.

6 http://cleaneval.sigwac.org.uk/annotation_guidelines.html
7 https://krdwrd.org/manual/html/node6.html

PRESEMT – D3.1.3: Corpus creation & annotation module (ver.3)

Page 10 of 21

It should also be noted that CleanEval includes web-spam and duplicate material in the definition of boi-
lerplate. Little effort has been invested into detecting this kind of content by CleanEval contestants
though. Only one system (Victor) tries to identify inter-page duplicate material. None of the participants
has made an attempt to detect web-spam. This is not surprising as while most boilerplate types can be
identified based on structural features (surrounding HTML mark-up) and shallow text features (such as
the number of tokens in a text block), a fundamentally different approach is required for detecting both
web-spam and duplicate content. Recognising web-spam is a challenging task which is out of the scope
of this work package; finding duplicated and near-duplicated texts is addressed in the next subsections.

5.1 Page-level and site-level methods

The approaches to automated boilerplate removal can be divided into two main groups: page-level and
site-level. The page-level algorithms process each web page individually. Within the site-level methods,
multiple pages from the same website are processed at once.

Site-level methods take advantage of the fact that web pages within the same website typically use the
same or a similar template. Consequently, the boilerplate sections show common characteristics across
the website and can be identified by exploiting similarities among web pages.

Nevertheless, site-level methods introduce practical problems as there may not be enough pages from
the same website available, either because they do not exist (the website is very small) or they have not
been downloaded for a given data set. The grouping of the web pages per website before processing is
a more complicated task than handling each page separately. It may be especially problematic, should
the processing be done while the data is still being collected.

Page-level boilerplate removal methods take a single web page as input. This makes them more flexible
and easier to use than the site-level methods.

Most boilerplate removal algorithms operate in two steps: segmentation and classification.

5.1.1 Segmentation

In the segmentation step, the input HTML page is separated into semantically coherent blocks. In sub-
sequent steps, each block is classified as either main content (clean text) or boilerplate. The blocks
should be sufficiently homogeneous in terms of boilerplate content, i.e. each block should ideally con-
tain either boilerplate or clean text, but not a mixture of both. Different segmentation algorithms are
used across boilerplate removal methods as well as different levels of granularity.

The segmentation granularity typically constitutes a trade-off between the homogeneity of blocks and
the ease of classification. If the segmentation is too fine-grained, individual blocks may be very small
and may not carry enough information to be classified reliably. If, on the other hand, the segmentation
is too coarse-grained, it is more likely that heterogeneous blocks will be formed.

Simple approaches to segmentation (preferred by most algorithms) include treating each DOM8 text
node as a single block or splitting the page at specified HTML tags.

5.1.2 Classification

The classification step decides for each block whether it is main content (clean text) or boilerplate. De-
pending on the application of the cleaned data, more than two classes may be supported. Some
CleanEval contestants, for instance, attempt to sub-classify the clean blocks as paragraphs, headers or
list items.

8 Document Object Model (DOM): http://www.w3.org/DOM/

PRESEMT – D3.1.3: Corpus creation & annotation module (ver.3)

Page 11 of 21

The commonly used classification methods include both heuristics and supervised machine learning
techniques, such as Conditional Random Fields (CRFs), Logistic regression classifiers, Support Vector
Machines (SVMs), decision trees and Naive Bayes. The lists of features used by different boilerplate
cleaning methods for making the classification decisions (heuristics or machine learning-based) overlap
to a high extent. The features can be divided into three main groups:

1. Structural features based on HTML mark-up: The most frequently used ones are tag density (the
number of HTML tags divided by the number of words/tokens), number of links and link density (the
proportion of tokens inside <a> tags), occurrence of certain tags and their count, parent tag type,
etc.

2. Textual features capture the properties of the text contained in the block. Typical textual features
include number of words or characters, number of sentences, average sentence length, proportion
of function words, frequency of certain keywords, proportion of capital letters or punctuation
marks, etc.

3. Visual features are derived from a visual form of a web page as rendered by web browsers. Most
researchers make use of visual features such as size and shape of a block, distance from the centre
of the page or from its borders, font size and weight, etc.

It is noteworthy that extracting visual features may be both computationally expensive and problematic
as (i) the web page must be rendered and (ii) external resources such as images or style sheets may be
required. For these reasons, most researchers avoid using visual features. Besides, there is no evidence
that systems employing visual features would perform better than systems which do not.

Until recently, the Body Text Extraction (BTE) algorithm (Finn et al., 2001) has been the leading player. It
removes boilerplate using a simple heuristic based on the density of HTML tags. The idea is that the
main body contains only limited formatting and is therefore sparse in terms of HTML tags. The naviga-
tion links, advertisements and alike, on the other hand, contain a lot of tags, and tend to be at the be-
ginning and the end of the page.

The BTE algorithm views a page as having three parts, beginning (boilerplate), middle (content) and end
(boilerplate). The task is then to detect the junctions between these three elements, which is done by
finding the points at which the ratio of tags to non-tags changes most steeply.

5.2 The PRESEMT solution: jusText

In early experiments, BTE was used as a pre-processing stage. Boilerplate was often found in the data
identified as duplicate content. This is not surprising as boilerplate is often repeated in web pages
within the same website. These experiments revealed a lot of boilerplate that BTE has failed to remove.
In the search for a more effective algorithm, jusText has been created.

The jusText algorithm uses a simple method of segmentation. The contents of some HTML tags are (by
default) visually formatted as blocks by web browsers. The idea is to form textual blocks by splitting the
HTML page on these tags with the hope that the resulting blocks will be sufficiently homogeneous in
terms of good and of boilerplate content. The evaluation section demonstrates that blocks of this kind
can contain both types of content, but such occurrences are too rare to constitute a problem.

Several observations can then be made about the blocks created in this way:

1. Short blocks which contain a link are almost always boilerplate.

2. Any blocks which contain many links are almost always boilerplate.

3. Long blocks which contain grammatical text are almost always good, whereas all other long blocks
are almost always boilerplate.

PRESEMT – D3.1.3: Corpus creation & annotation module (ver.3)

Page 12 of 21

4. Both good (main content) and boilerplate blocks tend to create clusters, i.e. a boilerplate block is
usually surrounded by other boilerplate blocks and vice versa.

Deciding whether a text is grammatical or not may be tricky, but a simple heuristic can be used based
on the frequency of function words (stop words). While a grammatical text will typically contain a cer-
tain proportion of function words, few function words will be present in boilerplate content such as lists
and enumerations.

The key idea of the algorithm is that long blocks and some short blocks can be classified with very high
confidence. All the other short blocks can then be classified by looking at the surrounding blocks.

jusText has been extensively evaluated, and found to outperform all other known algorithms. For a de-
tailed account of the algorithm and its performance see Pomikálek (2011).

PRESEMT – D3.1.3: Corpus creation & annotation module (ver.3)

Page 13 of 21

6. De-duplication

Many texts are present on the web in multiple instances. Common types of duplicates and near-
duplicates include mirrored websites, multiple presentation styles of the same web page (e.g. one for
viewing in a web browser and one for printing), document revisions, similar or identical news articles at
different news sites, quotations of previous posts in online discussion forums, etc. Duplicate content is
problematic for many applications of web data. For instance, imagine a web search engine which in-
dexes all web pages without worrying about duplicates. It could then easily happen that the first page
of web search results for a given query would only contain hits in identical documents. Such a search
engine would not be very useful. The situation is similar with web corpora. Users might get many dupli-
cate concordance lines when searching in a corpus containing duplicate texts. Moreover, duplicate con-
tent may bias results derived from statistical processing of corpus data by artificially inflating frequen-
cies of some words and expressions. Identifying and removing duplicate and near-duplicate texts is
therefore essential for using the web data in text corpora.

When referring to duplicates, it is important to distinguish between naturally and artificially repeated
texts. It is perfectly normal that some language phenomena, such as words, expressions and even full
sentences are used repeatedly and independently. Such recurrences are natural and are not considered
duplicates (at least in the scope of this work). On the other hand, there are texts which are taken copy-
and-paste from other sources (and possibly slightly modified) rather than created independently. Such a
repetition is no longer representative of normal language use. It is extremely unlikely that two different
language users would independently produce two completely identical paragraphs or even full docu-
ments. When referring to duplicates and near-duplicates, these copy-and-paste recurrences are meant.
Some researchers also use the term co-derivative texts.

Identifying duplicate and near-duplicate texts is fairly easy for small data collections. Here, we can sim-
ply compare each pair of documents (or other units, such as paragraphs). Deciding whether two docu-
ments are identical is trivial. It is also not difficult to decide whether two documents are similar (near-
duplicate). Many metrics are available for measuring the similarity of documents, such as Levenshtein
edit distance (Levenshtein, 1966), Broder's resemblance (Broder, 1997) or cosine similarity of document
vector space models. For small data sets, the similarity of each pair of documents can be computed and
the pairs with a similarity value above certain threshold reported as near-duplicates.

However, the problem gets difficult for large data collections where comparing each pair of documents
would be prohibitively expensive. Today, web corpora comprising billions of words are fairly common.
Such corpora are created from millions of web pages and would require trillions of pairwise document
comparisons to be performed.

For finding exact duplicates, document checksums (fingerprints) can be used. The checksum is an out-
put of a hash function, such as MD59. Two identical documents will always have the same checksum
whereas there is typically a high probability for the checksums of two different documents to be differ-
ent. The advantage of using checksums is that they are far shorter than the original documents and it is
far cheaper to compare them. They can be easily stored in memory. Duplicated documents can then be
identified and removed in a single pass over the data set by probing the checksum of each document
against the checksums of previously seen documents.

The situation is more complicated with near-duplicates. With standard hash functions, a change in a sin-
gle byte of the input changes the output completely. It is therefore not possible to assume that the
checksums of similar documents will be similar or even identical. The problem of finding near-duplicated
documents has been addressed by many researchers, mostly in the context of web search engines, by
using special fingerprinting techniques.

9 http://www.w3.org/TR/1998/REC-DSig-label/MD5-1_0

PRESEMT – D3.1.3: Corpus creation & annotation module (ver.3)

Page 14 of 21

6.1 Broder’s Shingling algorithm

Broder (2000) uses a special fingerprinting scheme designed specifically for detecting near-duplicate
documents. Each document is represented as a set of shingles (or n-grams), which are sequences of any
n consequent words. For example, for n = 6, the text “what shall we do with a drunken sailor" contains
three shingles:

(what; shall; we; do; with; a)

(shall; we; do; with; a; drunken)

(we; do; with; a; drunken; sailor)

Each document is then represented by a small random sample of shingles, thus economising on space
and time. A document similarity measure is then computed for each document pair according to the
number of shared shingles in their corresponding samples. The risk of misclassification can be kept arbi-
trarily low by changing the number of shingles used to represent a document.

Most of the research on identifying duplicate and near-duplicate content in large data collections has
been done in the context of web search engines. Here, the goal is to identify identical and almost iden-
tical pairs of web pages, i.e. those which only differ in small details, such as a timestamp or a visitor
count. Broder’s scheme and other methods are effective for this task and they scale up very well since
minor differences between documents can be detected by using very small document fingerprints.

However our analysis of web pages shows that almost-identical pages represent only a small percent-
age of web documents which have a significant amount of content in common. Pairs of web pages with
an intermediate level of similarity (say 50-80% of shared content) are fairly frequent. While these pairs
are probably of little interest for web search engines, they definitely cannot be ignored when creating
web corpora as they contain a lot of undesirable duplicate texts.

Applying the methods developed by search engine companies to removing this duplicate text leads ei-
ther to a significant loss in accuracy or to an increase of the size of the fingerprints and a reduction of
the scalability of the method. It is easy to see why this happens. The algorithms select some small sam-
ples of the original documents and estimate the similarities of documents by matching the samples. For
almost identical documents, a few samples are sufficient since it is likely that the identical parts of the
documents will be sampled and matched. Still, as the documents become less similar, the risk of sam-
pling different parts increases. This reduces the reliability of the method unless more samples are used.

The document sampling principle is common for most near-duplicate detection fingerprinting schemes
and the described problem can be expected to apply in all of these schemes.

6.2 Making use of duplicate n-grams

Bernstein and Zobel (2004) suggested that most of the near-duplicate detection algorithms select inap-
propriate document samples for fingerprints. They pointed out that those samples which occur only
once in the whole data set are not of any use for identifying near-duplicate documents. Including these
unique samples in document fingerprints only increases their size and/or harms the accuracy.

Bernstein and Zobel (2004) thus proposed an iterative algorithm (SPEX) for finding all shingles (n-
grams) which occur at least twice in the data set. For reasonably long shingles, the duplicated ones rep-
resent only a small percentage in most real world document collections. They demonstrated this on a
476MB collection of newswire articles from the Los Angeles Times. Out of 65,900,076 distinct shingles
of length eight (8-grams) only 907,981 (less than 1.4%) occurred two or more times.

PRESEMT – D3.1.3: Corpus creation & annotation module (ver.3)

Page 15 of 21

Since the duplicated shingles are fairly rare, it is possible to use them for creating reasonably sized
document fingerprints. Such fingerprints can be used for computing the values of document similarity
functions (such as resemblance) exactly rather than estimating them. Smaller fingerprints can be cre-
ated by sub-sampling. Though in this case the similarities can no longer be computed exactly, it should
still be possible to achieve more accurate estimates than from equally sized fingerprints based on virtu-
ally random sampling methods.

The SPEX algorithm computes the list of duplicated shingles in an iterative way. The core idea is as fol-
lows. A shingle S of length n can only be duplicated if both of its sub-shingles S1 and S2 of length n1 are
duplicated. If S1 or S2 is unique then it is clear that S must be unique, too. For example, the bigram ‘nas-
cent effort’ can only be duplicated if each of the words ‘nascent’ and ‘effort’ occurs at least twice in the
collection. SPEX starts from a list of duplicated unigrams (single words). Since the number of distinct
words is usually small even for large data collections, it is possible to hold a counter for each word in a
hash table. Thus, finding the duplicated words is straightforward.

However, with the increasing length of shingles, the number of distinct ones increases quickly. The
number of distinct long shingles (such as 10-grams) is usually close to the size (number of words) of the
whole data set. For large collections, this may easily exceed a normal capacity of RAM. Therefore, SPEX
prunes the shingles known to be unique based on the results of the previous iteration. For each n-gram,
both (n1)-grams are extracted and if one of them is not found among the duplicated (n1)-grams (identi-
fied in the previous iteration), the specific n-gram is ignored. This reduces memory requirements to
some extent.

Rychlý and Pomikálek (2008) show that the memory requirements of SPEX are still quite high, especially
throughout the third iteration. The problem is that the number of unique trigrams is typically high
whereas much fewer unique bigrams exist since many get repeated as a result of normal language use.
Thus, when the list of duplicated trigrams is built, a counter for many unique trigrams is needed which
are not pruned since they contain naturally duplicated bigrams.

6.2.1 Finding duplicate n-grams with a suffix array

While it is clear that duplicate n-grams are very useful for finding near-duplicate data, the high memory
requirements of the SPEX algorithm are problematic. We have therefore developed an alternative algo-
rithm for finding duplicate n-grams with a constant amount of memory.

An obvious way to get a list of duplicate n-grams is to generate all n-grams and sort them. External sort-
ing can be used for large collections. The input is split into sufficiently small chunks which can be sorted
in memory one by one. Each sorted chunk is dumped to a hard disk. As a last step, the sorted chunks are
merged to form the final sorted list. The problem of this approach is that a large amount of data has to
be processed. Note that the size of the list of all n-grams is n times the size of the whole corpus.

We have proposed two optimisations to the process. First, rather than sorting n-grams, we build a suffix
array using a suffix sorting algorithm. This can be done with much less memory than sorting n-grams.
Thus, larger chunks can be processed and the number of chunks is reduced. Generating the list of
sorted n-grams from a suffix array is straightforward.

Second, we compress the temporary files (sorted chunks) to reduce the required disk space. We start
by mapping words to numeric IDs in order to work with integers rather than with character strings. The
IDs are assigned in an increasing order starting from 0. Each newly encountered word is mapped to the
next unassigned ID. (The first word in the corpus is mapped to 0; the second word is mapped to 1 unless
it is the same as the first word, etc.). Frequent words are encountered early and thus they get small IDs.

Once the words are mapped to IDs we can think of the whole corpus as a long sequence of integers. We
split it to smaller sub-sequences which can be processed in memory. For each sub-sequence, a suffix
array is built using an efficient suffix sorting algorithm; a list of sorted n-grams (represented as se-
quences of n integers) is generated from the suffix array and stored in a temporary file.

PRESEMT – D3.1.3: Corpus creation & annotation module (ver.3)

Page 16 of 21

When saving the sorted n-grams, Elias codes (Witten et al., 1999) are used to represent the word IDs.
This compresses the data since frequent words are mapped to small integers and these are represented
by short bit-strings in Elias codes. Additional compression is achieved by omitting the longest common
prefix with the previous n-gram.

In order to build a suffix array, 12 bytes per word are required (4 bytes to represent the word ID and 8
bytes in auxiliary data structures). Thus, by using 1GB of memory, we can process chunks of roughly 89.5
million words. When sorting n-grams directly, we would need approximately 6n bytes per n-gram (as-
suming 5 bytes per word plus word separators) or 4n bytes per n-gram by using word enumeration (as-
suming 32-bit integers). For 10-grams, the latter (more favourable) approach still requires 40/12 or 3.33
times more memory than suffix sorting, i.e. 3.33GB of RAM would be needed for processing 89.5 million
words.

According to our experimental results, the size of the compressed temporary files is about 3 times the
size of the corpus. Direct external sort of n-grams would require n times the size of the corpus.

We have successfully applied the suffix sorting based algorithm to extract duplicate 10-grams from a
corpus of more than 9 billion words. It took 18.5 hours on a single 2.4 GHz machine and required no
more than 1.5GB RAM.

Since the time complexity of the proposed algorithm is close to linear and the memory requirements
are constant, the algorithm should be practical even for processing much larger corpora.

6.3 Removing duplicate text blocks

Having identified the duplicate content, the next step is to remove it. Removing near-duplicate data on
document level is often problematic, especially with respect to documents with an intermediate level of
duplicate content. Consider a largish document with 50% of duplicate content and 50% of unique con-
tent. By keeping the document we allow duplicate texts in the corpus. By discarding the document we
lose good texts. In an ideal case we would want to discard only the duplicate part and keep the unique
part.

An obvious way to do so is to work with smaller units than documents, such as paragraphs or even sen-
tences. This is fairly straightforward. However, it introduces a problem of fragmentation.

A full document is typically a sufficiently independent unit in the sense that it can be fully understood by
a reader without requiring any external information (except for eventual background knowledge in the
relevant area). The meaning of a sentence or a short text block taken out of context, on the other hand,
can often be unclear. It may be difficult to recognise the senses of the words in such a text.

When applying a de-duplication algorithm on units smaller than full documents, it can happen that some
documents are broken into small fragments (stubs) for which the context information is not available
since the surrounding text blocks have been removed as duplicates. Depending on the intended use of
the corpus it may be desirable to remove the stubs. The problem of document fragmentation has al-
ready been discussed in relation to boilerplate removal, with the context-sensitive classification of the
jusText algorithm reducing the fragmentation to a high extent. This part of the algorithm is reused for
the same purpose in the de-duplication process.

PRESEMT – D3.1.3: Corpus creation & annotation module (ver.3)

Page 17 of 21

7. The PRESEMT monolingual corpora

The following table provides detailed statistical information on the monolingual corpora collected so far
and their size after the process of boilerplate removal and de-duplication.

Table 2: Statistical data on PRESEMT monolingual corpora

Language English Italian German Greek Czech Norwegian

Corpus name
enTenTen /

BiWeC
itTenTen

deTenTen /
BigDeWaC

grTenTen czTenTen2 noTenTen

final size (in tokens) 3,658,726,327 3,076,812,674 2,874,779,294 1,073,266,453 5,817,987,733 2,267,156,701

downloaded volume (gzipped) 129 GB 272 GB 291 GB 157 GB 737 GB 364 GB

downloaded volume uncompressed 645 GB 1360 GB 1455 GB 785 GB 3685 GB 1820 GB

downloaded (unique) URLs 13,638,928 33,459,999 43,160,992 18,000,511 56,412,800

original main content (words) 6,805,296,135 7,740,199,568

original boilerplate content (words) 7,843,420,305 14,814,859,910

after removing exact duplicates

docs 3,357,252 5,335,839 8,237,310 3,357,894 25,648,298

tokens 4,765,119,530 5,017,409,779 4,880,335,291 1,952,309,530 20,910,062,785

duplicate 10-grams 212,864,389 295,369,351 331,258,395 131,047,973 1,203,306,925

after removing duplicate text blocks

docs 2,838,738 4,020,968 5,752,857 2,208,243 10,863,853 6,015,349

tokens 3,658,726,327 3,076,812,674 2,874,779,294 1,073,266,453 5,817,987,733 2,267,156,701

duplicate 10-grams 6,757,185 12,230,555 7,196,387 3,375,029 7,243,513 4,473,418

words = whitespace separated character strings (wc -w)

tokens = unitok.py (universal tokeniser) output

PRESEMT – D3.1.3: Corpus creation & annotation module (ver.3)

Page 18 of 21

Data for all corpora have been collected using the Heritrix crawler. For Czech we have also applied our
new crawler SpiderLing in the course of 2011 (see section 3.1). We have merged the data previously col-
lected using Heritrix with the SpiderLing crawled data and increased the corpus size from 2bn tokens to
5.8bn (after de-duplication). The new crawler proved to be a more effective solution for collecting web
corpora than Heritrix. Our experiments suggest that by using SpiderLing a download speed of up to 1bn
tokens a day can be achieved (Suchomel and Pomikálek 2011). Thus, we shall be able to create a larger
corpus than currently available for any relevant language in about a week should it turn out that more
data is required for the PRESEMT project.

7.1 Corpus annotation

The English, German and Italian corpora have been part-of-speech tagged and lemmatised using Tree-
Tagger10. In order to obtain morphologically richer tags for the German corpus, we have also applied
RFTagger11. The final corpus contains POS tags from both TreeTagger and RFTagger and lemmata from
TreeTagger. For English and German corpora TreeTagger’s chunking functionality has also been applied.

Norwegian corpus has been processed with Oslo-Bergen tagger12, while the Greek corpora have been
tagged and lemmatised with the ILSP FBT Tagger & Lemmatiser (Papageorgiou et al., 2000). For Czech,
part-of-speech tagging using desamb (Šmerk 2004) is in progress.

10 http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger/DecisionTreeTagger.html
11 http://www.ims.uni-stuttgart.de/projekte/corplex/RFTagger/
12 http://tekstlab.uio.no/obt-ny/english/index.html

PRESEMT – D3.1.2: Corpus creation & annotation module (ver.2)

Page 19 of 21

8. The PRESEMT bilingual corpora

Whereas the core monolingual corpora should be huge, comprising billions of words, the bilingual cor-
pora required for each language pair need only comprise a few thousand words. The bilingual corpora
serve a two-fold purpose: (i) they are utilised by the Phrase aligner module, so as to extract phrasing
models per language pair, and (ii) the Structure selection module accesses them for establishing the
optimal sentence structure of a given SL text input for translation.

The bilingual corpora created by the consortium members have been compiled according to the follow-
ing criteria:

1. The corpus size should amount to 200 sentences of variant length.

2. It should be preferably collected from a bilingual or multilingual website.

3. After the corpus has been collected, the source language side should be modified so as to bring it as
“close” as possible to the target language side (e.g. avoid metaphors or elliptical constructions,
smooth out divergences between the two languages etc.). A copy of the original corpus version
should be kept, as this can be used later for additional experiments.

4. The SL side of the modified corpus should be tagged and lemmatised. The output should be cor-
rected.

5. The TL side of the modified corpus should be tagged, lemmatised and parsed. The output should be
corrected.

6. The corrected outputs of steps 5 and 6 will be fed to the Phrase aligner module.

The following table illustrates the bilingual corpora collected so far per language pair, whereas the sub-
sequent subsections describe data sources:

Table 3: PRESEMT bilingual corpora

 Target Language

 English German Italian

Czech 1 1

English 1

German 1

Greek 1 1

S
o

u
rc

e
 L

an
g

u
ag

e

Norwegian 1 1

8.1 Czech-SL corpora (MU)

The Czech-to-English corpus was prepared 1997 by the Department of English and American Studies,
Faculty of Arts, Masaryk University in cooperation with the NLP Centre, Faculty of Informatics, Masaryk
University. It is a small parallel corpus which allows one to work with entire texts in translation analysis
rather then short extracts. At the same time it aims at acquiring experience that could be used in creat-
ing a larger parallel corpus of English and Czech in the future. Its original name is KACENKA (in Czech:
Korpus anglicko- český – elektronicky nastroj Katedry anglistiky – acronym also means 'small duck'). It
contains 3,297,283 words from which the respective number of sentences was selected.

PRESEMT – D3.1.2: Corpus creation & annotation module (ver.2)

Page 20 of 21

The Czech-to-German corpus was prepared by the Department of German Language and Literature,
Pedagogical Faculty, Masaryk University in cooperation with the NLP Centre, Faculty of Informatics. It
was made accessible in 2002 on the server of the NLP Centre FI MU. From 2003 it contains 184 texts
(newspapers, fiction) and 3,637,825 tokens in the Czech part from which the respective number of sen-
tences was selected.

For both of these corpora, the alignment at paragraph and sentence level was performed manually. The
Czech text was annotated by the desamb tagger, while the English and German texts were processed
with TreeTagger13. Their use is limited to research and teaching purposes only.

Both Czech-source corpora are in the following files: *.sent – sentences (one sentence per line) and
*.vert – vertical (one word per line). From these corpora, the 2 bilingual corpora required by PRESEMT
for Czech-to-English and for Czech-to-German have been extracted.

8.2 German-SL corpora (GFAI)

The German-to-English bilingual corpus comprises 164 sentence pairs of 6,767 tokens in total. It origi-
nates from a multilingual EU website (http://europa.eu/abc/12lessons/index_en.htm), referring to vari-
ous EU-related issues. The German text has been tagged and lemmatised with TreeTagger and RFTag-
ger14, while the TL side (English) has been processed with TreeTagger, yielding tag, lemma and phrase
annotations. The same corpus is used for the development of the German-to-English and English-to-
German MT systems, where the SL and TL roles are alternated.

8.3 Greek-SL corpora (ILSP)

The Greek-to-English bilingual corpus was collected manually from a multilingual website of EU
(http://europa.eu/abc/history/index_en.htm) and its content refers to the history of the European Un-
ion. It numbers 200 sentence pairs and contains 6,659 tokens. The Greek side of the corpus has been
tagged and lemmatised with the ILSP FBT Tagger & Lemmatiser (Papageorgiou et al., 2000), while the
English side has been processed with TreeTagger, yielding tag, lemma and phrase annotations.

The Greek-to-German bilingual corpus was also extracted manually from a multilingual website of EU
(http://www.eea.europa.eu/), its content spanning various topics such as air pollution, environment and
health, household consumption etc. It numbers 200 sentence pairs and contains 8,705 tokens. The ILSP
FBT Tagger & Lemmatiser has been used for tagging and lemmatising the Greek text, while the German
one has been processed with TreeTagger and RFTagger, yielding tag, lemma and phrase annotations.

8.4 Norwegian-SL corpora (NTNU)

As the Greek and German corpora were derived from the multilingual website about the history of the
EU, NTNU decided to proceed with the same material. However, as Norway is not an EU member, there
is no Norwegian version of this site. Therefore the relevant sentences were translated from the Danish
version (which is closest) to Norwegian. Currently NTNU is in the progress of “anglification” / “germani-
fication” (i.e. step 4 above), in order to bring the Norwegian translations closer to the target language
(English / German).

13 http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger/DecisionTreeTagger.html
14 http://www.ims.uni-stuttgart.de/projekte/corplex/RFTagger/

PRESEMT – D3.1.2: Corpus creation & annotation module (ver.2)

Page 21 of 21

9. References

Bernstein Y. and Zobel J., 2004. A scalable system for identifying co-derivative documents. Proceedings
of String Processing and Information Retrieval Symposium, pages 55-67.

Broder A. Z., 1997. "On the Resemblance and Containment of Documents". Proceedings of Compression
and Complexity of Sequences 1997, pp. 21-27, IEEE Computer Society.

Broder A. Z., 2000. Identifying and filtering near-duplicate documents. Proceedings of the 11th Annual
Symposium on Combinatorial Pattern Matching, pages 110.

Finn A., Kushmerick N. and Smyth B., 2001. Fact or fiction: Content classification for digital libraries. In
DELOS Workshop: Personalisation and Recommender Systems in Digital Libraries.

A. Kilgarriff, S. Reddy, J. Pomikálek, and A. PVS. A corpus factory for many languages. Proc. LREC, Malta,
2010.

Levenshtein, V.I., 1966. Binary codes capable of correcting deletions, insertions, and reversals. Soviet
Physics Doklady, 10, 8, pp. 707-710.

Papageorgiou H., Prokopidis P., Giouli V. and Piperidis S., 2000.A Unified POS Tagging Architecture and
its Application for Greek. In Proceedings of the 2nd Language Resources and Evaluation
Conference, pp. 1455-1462, Athens, Greece.

Pomikálek J. 2011. Removing Boilerplate and Duplicate Content from Web Corpora (PhD thesis).
Masaryk University, Brno, Czech Republic.

Pomikálek J. and Rychlý P., 2008. Detecting co-derivative documents in large text collections. In
Proceedings of LREC, 2008. Marrakech, Morrocco.

Šmerk P., 2004 Unsupervised Learning of Rules for Morphological Disambiguation. Lecture Notes in

Computer Science, Berlin : Springer Verlag, 3206, 1. ISSN 0302-9743.

Suchomel V. and Pomikálek J., 2011. Practical web crawling for text corpora. In Proceedings of Recent

Advances in Slavonic Natural Language Processing, RASLAN 2011. Brno : Tribun EU, 2011. ISBN 978-
80-263-0077-9, pp. 97-108. 2.12.2011, Karlova Studánka, Czech Republic.

Witten I.H., Moffat A. and Bell T.C., 1999. Managing Gigabytes: Compressing and Indexing Documents
and Images. Morgan Kaufmann.

